×

A family of non-oscillatory 6-point interpolatory subdivision schemes. (English) Zbl 1373.65008

Subdivision schemes are a fundamental tool in approximation theory and its applications. They allow to generate recursively functions of various smoothness in a stable algorithms (such as analysed in detail in the cases in this paper), and sometimes the refinement process approximates well in a quickly convergent manner (uniform convergence in the present article). Their definition depends on the number of points and on the choice whether they are interpolatory or non-interpolatory. In this article, schemes with the former property are studied. The schemes considered here reproduce all cubic polynomials. Numerical tests are carried out, again to study the mentioned stability of the schemes. Sometimes, the recursive schemes give an unwelcome Gibbs phenomenon (oscillatory property); the subdivision algorithms analysed in this article are, however, non-oscillatory.

MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A10 Approximation by polynomials

References:

[1] Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv. Comput. Math. 34(3), 253-277 (2011) · Zbl 1252.65027 · doi:10.1007/s10444-010-9151-6
[2] Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a new nonlinear subdivision scheme. Applications in image processing, Applications in Image Processing. Found Comput. Math., 193-225 (2006) · Zbl 1106.41001
[3] Dadourian, K., Liandrat, J.: Analysis of some bivariate non-linear interpolatory subdivision schemes. Numer. Algorithm. 48, 261-278 (2008) · Zbl 1187.65019 · doi:10.1007/s11075-008-9169-8
[4] Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: A fully adaptive multiresolution scheme for image processing. Math. Comput. Modell. 46, 2-11 (2007) · Zbl 1134.68063 · doi:10.1016/j.mcm.2006.12.003
[5] Kuijt, F.: Convexity preserving interpolation. Stationary nonlinear subdivision and splines. PhD thesis, University of Twente, The Netherlands (1998) · Zbl 0918.41002
[6] Deslauriers, G., Dubuc, S.: Interpolation dyadique: fractals, dimension non entieres et application. Masson Paris, 44-45 (1987) · Zbl 1134.68063
[7] Clarke, F.H., Ledyae, Y.S.: Mean value inequalities. Proc. Am. Math. Soc. 122, 1075-1083 (1994) · Zbl 0856.49017 · doi:10.1090/S0002-9939-1994-1212282-4
[8] Kuijt, F., Van Damme, R.: Monotonicity preserving interpolatory subdivision scheme. J. Comput. Appl. Math. 101, 203-229 (1999) · Zbl 0947.65007 · doi:10.1016/S0377-0427(98)00220-9
[9] Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function i: linear reconstruction techniques. SIAM J. Numer. Anal. 36, 160-203 (1999) · Zbl 0932.42022 · doi:10.1137/S0036142996308770
[10] Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33, 1205-1256 (1996) · Zbl 0861.65130 · doi:10.1137/0733060
[11] Aràndiga, F., Donat, R.: Nonlinear multi-scale decomposition: the approach of A. harten. Numer. Algorithm. 23, 175-216 (2000) · Zbl 0952.65015 · doi:10.1023/A:1019104118012
[12] Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399-463 (2003) · Zbl 1051.42025
[13] Burden, R.L., Douglas Faires, J.: Numerical analysis. Thomson Brooks/Cole (2005) · Zbl 0671.65001
[14] Aràndiga, F., Belda, A.M., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43, 158-182 (2010) · Zbl 1203.94004 · doi:10.1007/s10915-010-9351-8
[15] Marquina, A., Serna, S.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194(2), 632-658 (2004) · Zbl 1044.65071 · doi:10.1016/j.jcp.2003.09.017
[16] Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89-116 (2003) · Zbl 1046.65071 · doi:10.1016/S1063-5203(03)00061-7
[17] Dadourian, K.: Schémas de Subdivision, Analyses Multirésolutions non-linéaires, Applications, PhD thesis, Université de Provence (2008) · Zbl 1051.42025
[18] Xie, G., Yu, T.P.-Y.: Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type. Constr. Approx. 22, 219-254 (2005) · Zbl 1097.42025 · doi:10.1007/s00365-004-0581-6
[19] Harizanov, S., Oswald, P.: Stability of nonlinear subdivision and multiscale transforms. Constr. Approx. 31(3), 359-393 (2010) · Zbl 1225.65028 · doi:10.1007/s00365-010-9082-y
[20] Dyn, N.: Subdivision schemes in computer-aided geometric design, Advances in numerical analysis, Vol. II (Lancaster, 1990), pp 36-104. Oxford Science of Publication, Oxford University Press, New York (1992) · Zbl 0760.65012
[21] Imbert, C.: Support functions of the Clarke generalized Jacobian and of its plenary hull. Nonlinear Anal. 49, 1111-1125 (2002) · Zbl 1009.49017 · doi:10.1016/S0362-546X(01)00730-1
[22] Aràndiga, F., Donat, R., Santágueda, M.: The PCHIP subdivision scheme. J. Comput. Appl. Math. 272, 28-40 (2016) · Zbl 1410.65044 · doi:10.1016/j.amc.2015.07.071
[23] Aràndiga, F., Donat, R., Santágueda, M.: Weighted- Powerp nonlinear subdivision schemes. Curv. Surf. 6920, 109-129 (2012) · Zbl 1352.65048 · doi:10.1007/978-3-642-27413-8_7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.