×

Asymptotic \(C^{1,\gamma}\)-regularity for value functions to uniformly elliptic dynamic programming principles. (English) Zbl 1527.91011

Summary: In this paper we prove an asymptotic \(C^{1,\gamma}\)-estimate for value functions of stochastic processes related to uniformly elliptic dynamic programming principles. As an application, this allows us to pass to the limit with a discrete gradient and then to obtain a \(C^{1,\gamma}\)-result for the corresponding limit PDE.

MSC:

91A15 Stochastic games, stochastic differential games
35B65 Smoothness and regularity of solutions to PDEs
90C39 Dynamic programming

References:

[1] Arroyo, Á.; Luiro, H.; Parviainen, M.; Ruosteenoja, E., Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities, Potent. Anal., 53, 2, 565-589 (2020) · Zbl 1444.91020 · doi:10.1007/s11118-019-09778-8
[2] Arroyo, Á., Blanc, P., Parviainen, M.: Hölder regularity for stochastic processes with bounded and measurable increments. arXiv preprint arXiv:2109.01027. To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire · Zbl 1510.35087
[3] Arroyo, Á., Blanc, P., Parviainen, M.: Local regularity estimates for general discrete dynamic programming equations. arXiv preprint arXiv:2207.01655. To appear in J. Math. Pures Appl. · Zbl 1500.35064
[4] Brustad, KK; Lindqvist, P.; Manfredi, JJ, A discrete stochastic interpretation of the dominative \(p\)-Laplacian, Differ. Integral Equ., 33, 9-10, 465-488 (2020) · Zbl 1474.35292
[5] Blanc, P., Rossi, J.D.: Game Theory and Partial Differential Equations, volume 31 of De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter (2019) · Zbl 1430.91001
[6] Blanc, P.; Rossi, JD, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pures Appl., 9, 127, 192-215 (2019) · Zbl 1423.35118 · doi:10.1016/j.matpur.2018.08.007
[7] Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math.(2) 130(1) 189-213 (1989) · Zbl 0692.35017
[8] Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence, RI (1995) · Zbl 0834.35002
[9] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 5, 597-638 (2009) · Zbl 1170.45006 · doi:10.1002/cpa.20274
[10] Caffarelli, L., Leit ao, R., Urbano, J. M.: Regularity for anisotropic fully nonlinear integro-differential equations. Math Ann. 360(3-4):681-714 (2014) · Zbl 1304.35730
[11] Caffarelli, L., Teymurazyan, R., Urbano, J.M.: Fully nonlinear integro-differential equations with deforming kernels. Commun. Part. Differ. Equ. 1-25 (2020) · Zbl 1452.35055
[12] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (Reprint of the 1998 edition) (2001) · Zbl 1042.35002
[13] Krylov, NV; Safonov, MV, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245, 1, 18-20 (1979)
[14] Lewicka, M.: A course on tug-of-war games with random noise. Introduction and Basic Constructions. Springer, Berlin (2020) · Zbl 1452.91002
[15] Luiro, H., Parviainen, M.: Regularity for nonlinear stochastic games. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(6):1435-1456 (2018) · Zbl 1398.91058
[16] Luiro, H.; Parviainen, M.; Saksman, E., Harnack’s inequality for \(p\)-harmonic functions via stochastic games, Comm. Part. Differ. Equ., 38, 11, 1985-2003 (2013) · Zbl 1287.35044 · doi:10.1080/03605302.2013.814068
[17] Manfredi, JJ; Parviainen, M.; Rossi, JD, On the definition and properties of p-harmonious functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11, 2, 215-241 (2012) · Zbl 1252.91014
[18] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[19] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, DB, Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.