×

Hölder regularity for stochastic processes with bounded and measurable increments. (English) Zbl 1510.35087

Summary: We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov-Safonov regularity result in PDEs. However, the discrete step size \(\varepsilon\) has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35J15 Second-order elliptic equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
91A50 Discrete-time games

References:

[1] Á. Arroyo, J. Heino, and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p.x/-Laplacian. Commun. Pure Appl. Anal. 16 (2017), no. 3, 915-944 Zbl 1359.35062 MR 3623556 · Zbl 1359.35062
[2] Á. Arroyo and M. Parviainen, Asymptotic Hölder regularity for the ellipsoid process. ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 112 Zbl 1459.35061 MR 4185066 · Zbl 1459.35061
[3] R. F. Bass, Diffusions and elliptic operators. Probab. Appl. (New York), Springer, New York, 1998 Zbl 0914.60009 MR 1483890 · Zbl 0914.60009
[4] P. Blanc, C. Esteve, and J. D. Rossi, The evolution problem associated with eigenvalues of the Hessian. J. Lond. Math. Soc. (2) 102 (2020), no. 3, 1293-1317 Zbl 1462.35136 MR 4186128 · Zbl 1462.35136
[5] P. Blanc, J. P. Pinasco, and J. D. Rossi, Maximal operators for the p-Laplacian family. Pacific J. Math. 287 (2017), no. 2, 257-295 Zbl 1362.35143 MR 3632889 · Zbl 1362.35143
[6] K. K. Brustad, P. Lindqvist, and J. J. Manfredi, A discrete stochastic interpretation of the dominative p-Laplacian. Differential Integral Equations 33 (2020), no. 9-10, 465-488 Zbl 1474.35292 MR 4149517 · Zbl 1474.35292
[7] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equa-tions. Comm. Pure Appl. Math. 62 (2009), no. 5, 597-638 Zbl 1170.45006 MR 2494809 · Zbl 1170.45006
[8] L. Caffarelli, R. Teymurazyan, and J. M. Urbano, Fully nonlinear integro-differential equations with deforming kernels. Comm. Partial Differential Equations 45 (2020), no. 8, 847-871 Zbl 1452.35055 MR 4126323 · Zbl 1452.35055
[9] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, RI, 1995 Zbl 0834.35002 MR 1351007 · Zbl 0834.35002
[10] L. A. Caffarelli, R. Leitão, and J. M. Urbano, Regularity for anisotropic fully nonlinear integro-differential equations. Math. Ann. 360 (2014), no. 3-4, 681-714 Zbl 1304.35730 MR 3273642 · Zbl 1304.35730
[11] H. Chang Lara and G. Dávila, Regularity for solutions of nonlocal, nonsymmetric equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 29 (2012), no. 6, 833-859 Zbl 1317.35278 MR 2995098 · Zbl 1317.35278
[12] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics, Springer, Berlin, 2001 Zbl 1042.35002 MR 1814364
[13] N. Guillen and R. W. Schwab, Aleksandrov-Bakelman-Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal. 206 (2012), no. 1, 111-157 Zbl 1256.35190 MR 2968592 · Zbl 1256.35190
[14] H. Hartikainen, A dynamic programming principle with continuous solutions related to the p-Laplacian, 1 < p < 1. Differential Integral Equations 29 (2016), no. 5-6, 583-600 Zbl 1374.35020 MR 3471974 · Zbl 1374.35020
[15] N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18-20 Zbl 0459.60067 MR 525227 · Zbl 0459.60067
[16] N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161-175, 239 Zbl 0439.35023 MR 563790
[17] H. J. Kuo and N. S. Trudinger, Linear elliptic difference inequalities with random coefficients. Math. Comp. 55 (1990), no. 191, 37-53 Zbl 0716.39005 MR 1023049 · Zbl 0716.39005
[18] S. Kusuoka, Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations. Anal. PDE 8 (2015), no. 1, 1-32 Zbl 1316.35064 MR 3336920 · Zbl 1316.35064
[19] G. F. Lawler, Estimates for differences and Harnack inequality for difference operators com-ing from random walks with symmetric, spatially inhomogeneous, increments. Proc. London Math. Soc. (3) 63 (1991), no. 3, 552-568 Zbl 0701.39002 MR 1127149 · Zbl 0774.39004
[20] M. Lewicka, A course on tug-of-war games with random noise. Universitext, Springer, Cham, 2020 Zbl 1452.91002 MR 4174394
[21] T. Lindvall and L. C. G. Rogers, Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (1986), no. 3, 860-872 Zbl 0593.60076 MR 841588 · Zbl 0593.60076
[22] H. Luiro and M. Parviainen, Gradient walks and p-harmonic functions. Proc. Amer. Math. Soc. 145 (2017), no. 10, 4313-4324 Zbl 1376.35082 MR 3690615 · Zbl 1376.35082
[23] H. Luiro and M. Parviainen, Regularity for nonlinear stochastic games. Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 6, 1435-1456 Zbl 1398.91058 MR 3846232 · Zbl 1398.91058
[24] H. Luiro, M. Parviainen, and E. Saksman, Harnack’s inequality for p-harmonic functions via stochastic games. Comm. Partial Differential Equations 38 (2013), no. 11, 1985-2003 Zbl 1287.35044 MR 3169768 · Zbl 1287.35044
[25] H. Luiro, M. Parviainen, and E. Saksman, On the existence and uniqueness of p-harmonious functions. Differential Integral Equations 27 (2014), no. 3-4, 201-216 Zbl 1324.49029 MR 3161602 · Zbl 1324.49029
[26] J. J. Manfredi, M. Parviainen, and J. D. Rossi, On the definition and properties of p-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215-241 Zbl 1252.91014 MR 3011990 · Zbl 1252.91014
[27] Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009), no. 1, 167-210 Zbl 1206.91002 MR 2449057 · Zbl 1206.91002
[28] Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145 (2008), no. 1, 91-120 Zbl 1206.35112 MR 2451291 · Zbl 1206.35112
[29] C. Pucci and G. Talenti, Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Advances in Math. 19 (1976), no. 1, 48-105 MR 419989
[30] E. Ruosteenoja, Local regularity results for value functions of tug-of-war with noise and run-ning payoff. Adv. Calc. Var. 9 (2016), no. 1, 1-17 Zbl 1331.35069 MR 3441079 · Zbl 1331.35069
[31] R. W. Schwab and L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9 (2016), no. 3, 727-772 Zbl 1349.47079 MR 3518535 · Zbl 1349.47079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.