×

Sonic-supersonic solutions for the two-dimensional steady compressible multiphase flow equations. (English) Zbl 1527.35241

Summary: This paper is concerned with the sonic-supersonic structures for the two-dimensional steady compressible inviscid multiphase flow equations. We construct a local classical supersonic solution near a given smooth sonic curve. This problem is originated from the transonic channel multiphase flows, which are one kind of the most important problems in mathematical fluid dynamics. In order to overcome the difficulties caused by the parabolic degeneracy near sonic and the multivariable dependence of pressure, we adopt the mixed variables of the pressure and angle functions and derive the characteristic decompositions of these quantities. In terms of the angle coordinate system, the multiphase flow equations can be transformed into a new degenerate hyperbolic system with an explicit singularity-regularity structure. We verify the convergence of the iterative sequence generated by the new system and then return the solution to the original physical variables. As a by-product, we obtain the existence of sonic-supersonic solutions for the steady full Euler equations with non-polytropic gases.

MSC:

35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
76H05 Transonic flows
76J20 Supersonic flows
76N15 Gas dynamics (general theory)
35M33 Initial-boundary value problems for mixed-type systems of PDEs
35A09 Classical solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Benzoni-Gavage, S.; Serre, D., Compacité par compensation pour une classe de systémes hyperboliques de \(p \geq 3\) lois de conservation. Rev. Mat. Iberoam., 557-579 (1994) · Zbl 0834.35081
[2] Bers, L., Mathematical Aspects of Subsonic and Transonic Gas Dynamics (1958), John Wiley: John Wiley New York · Zbl 0083.20501
[3] Brennen, C., Fundamentals of Multiphase Flow (2005), Cambridge University Press · Zbl 1127.76001
[4] Bresch, D.; Desjardins, B.; Ghidaglia, J.; Grenier, E.; Hilliairet, M., Multifluid models including compressible fluids, 52
[5] Bresch, D.; Mucha, P.; Zatorska, E., Finite-energy solutions for compressible two-fluid Stokes system. Arch. Ration. Mech. Anal., 987-1029 (2019) · Zbl 1412.35214
[6] Chen, G.; Dafermos, C.; Slemrod, M.; Wang, D., On two-dimensional sonic-subsonic flow. Commun. Math. Phys., 635-637 (2007) · Zbl 1128.35070
[7] Chen, G.; Feldman, M., Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Am. Math. Soc., 461-494 (2003) · Zbl 1015.35075
[8] Chen, G.; Huang, F.; Wang, T., Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Ration. Mech. Anal., 719-740 (2016) · Zbl 1333.35168
[9] Chen, G.; Slemrod, M.; Wang, D., Vanishing viscosity method for transonic flow. Arch. Ration. Mech. Anal., 159-188 (2008) · Zbl 1140.76014
[10] Chen, S., Compressible flow and transonic shock in a diverging nozzle. Commun. Math. Phys., 75-106 (2009) · Zbl 1273.76350
[11] Chen, S.; Xin, Z.; Yin, H., Global shock waves for the supersonic flow past a perturbed cone. Commun. Math. Phys., 47-84 (2002) · Zbl 1006.76080
[12] Cole, J.; Cook, L., Transonic Aerodynamics. North-Holland Series in Applied Mathematics and Mechanics (1986) · Zbl 0622.76067
[13] Courant, R.; Friedrichs, K., Supersonic Flow and Shock Waves (1948), Interscience: Interscience New York · Zbl 0041.11302
[14] Drew, D.; Passman, S., Theory of Multicomponent Fluids (1999), Springer-Verlag: Springer-Verlag New York
[15] Du, L.; Xie, C.; Xin, Z., Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Commun. Math. Phys., 327-354 (2014) · Zbl 1293.35224
[16] Elling, V.; Liu, T., Supersonic flow onto a solid wedge. Commun. Pure Appl. Math., 1347-1448 (2008) · Zbl 1143.76030
[17] Evje, S.; Karlsen, K., Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ., 2660-2703 (2008) · Zbl 1148.76056
[18] Evje, S., Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells. SIAM J. Math. Anal., 1887-1922 (2011) · Zbl 1432.76261
[19] Hao, C.; Li, H., Well-posedness for a multidimensional viscous liquid-gas two-phase flow model. SIAM J. Math. Anal., 1304-1332 (2012) · Zbl 1434.76102
[20] Hu, Y.; Chen, J., Sonic-supersonic solutions to a mixed-type boundary value problem for the two-dimensional full Euler equations. SIAM J. Math. Anal., 1579-1629 (2021) · Zbl 1465.35336
[21] Hu, Y.; Li, J., Sonic-supersonic solutions for the two-dimensional steady full Euler equations. Arch. Ration. Mech. Anal., 1819-1871 (2020) · Zbl 1437.35486
[22] Hu, Y.; Li, J., On a global supersonic-sonic patch characterized by 2-D steady full Euler equations. Adv. Differ. Equ., 213-254 (2020) · Zbl 1448.35334
[23] Huang, F.; Wang, D.; Yuan, D., Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete Contin. Dyn. Syst., 3535-3575 (2019) · Zbl 1415.76638
[24] Ishii, M.; Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1204.76002
[25] Kolev, N., Multiphase Flow Dynamics, vols. 1, 2 (2005), Springer-Verlag: Springer-Verlag Berlin · Zbl 1111.76002
[26] Kuz’min, A., Boundary Value Problems for Transonic Flow (2002), John Wiley and Sons
[27] Lai, G.; Sheng, W., Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics. J. Math. Pures Appl., 179-206 (2015) · Zbl 1326.35201
[28] Li, F.; Hu, Y., On a degenerate mixed-type boundary value problem to the 2-D steady Euler equations. J. Differ. Equ., 6265-6289 (2019) · Zbl 1428.35329
[29] Li, J.; Zhang, T.; Zheng, Y., Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations. Commun. Math. Phys., 1-12 (2006) · Zbl 1113.76080
[30] Li, J.; Zheng, Y., Interaction of rarefaction waves of the two-dimensional self-similar Euler equations. Arch. Ration. Mech. Anal., 623-657 (2009) · Zbl 1170.76021
[31] Li, J.; Zheng, Y., Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations. Commun. Math. Phys., 303-321 (2010) · Zbl 1193.35140
[32] Li, M.; Zheng, Y., Semi-hyperbolic patches of solutions of the two-dimensional Euler equations. Arch. Ration. Mech. Anal., 1069-1096 (2011) · Zbl 1270.76064
[33] Li, Y.; Sun, Y.; Zatorska, E., Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data. Nonlinearity, 4075-4094 (2020) · Zbl 1446.76164
[34] Li, Y.; Zatorska, E., On weak solutions to the compressible inviscid two-fluid model. J. Differ. Equ., 33-50 (2021) · Zbl 1476.35206
[35] Morawetz, C., On the non-existence of continuous transonic flow past profiles I. Commun. Pure Appl. Math., 45-68 (1956) · Zbl 0070.20206
[36] Morawetz, C., On a weak solution for a transonic flow problem. Commun. Pure Appl. Math., 797-817 (1985) · Zbl 0615.76070
[37] Novotny, A.; Pokorny, M., Weak solutions for some compressible multicomponent fluid models. Arch. Ration. Mech. Anal., 355-403 (2020) · Zbl 1434.35062
[38] Protter, M., The Cauchy problem for a hyperbolic second order equation with data on the parabolic line. Can. J. Math., 542-553 (1954) · Zbl 0057.08101
[39] Ruan, L.; Wang, D.; Weng, S.; Zhu, C., Rectilinear vortex sheets of inviscid liquid-gas two-phase flow: linear stability. Commun. Math. Sci., 735-776 (2016) · Zbl 1334.35253
[40] Ruan, L.; Trakhinin, Y., Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results. Physica D, 66-71 (2019) · Zbl 1451.76132
[41] Song, K.; Wang, Q.; Zheng, Y., The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics. SIAM J. Math. Anal., 2200-2219 (2015) · Zbl 1325.35153
[42] Vasseur, A.; Wen, H.; Yu, C., Global weak solution to the viscous two-fluid model with finite energy. J. Math. Pures Appl., 247-282 (2019) · Zbl 1450.76033
[43] Wang, C.; Xin, Z., Smooth transonic flows of Meyer type in de Laval nozzles. Arch. Ration. Mech. Anal., 1597-1647 (2019) · Zbl 1414.35176
[44] Wang, C.; Xin, Z., Regular subsonic-sonic flows in general nozzles. Adv. Math. (2021) · Zbl 1458.35321
[45] Wen, H.; Yao, L.; Zhu, C., A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum. J. Math. Pures Appl., 204-229 (2012) · Zbl 1398.76224
[46] Xie, C.; Xin, Z., Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ. Math. J., 2991-3023 (2007) · Zbl 1156.35076
[47] Xin, Z.; Yin, H., Transonic shock in a nozzle I: two-dimensional case. Commun. Pure Appl. Math., 999-1050 (2005) · Zbl 1076.76043
[48] Yao, L.; Zhang, T.; Zhu, C., Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model. SIAM J. Math. Anal., 1874-1897 (2010) · Zbl 1430.76460
[49] Zhang, T.; Zheng, Y., Sonic-supersonic solutions for the steady Euler equations. Indiana Univ. Math. J., 1785-1817 (2014) · Zbl 1320.35245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.