×

Stability of the Couette flow under the 2D steady Navier-Stokes flow. (English) Zbl 1527.35221

Summary: In this note, we investigate the stability property of shear flows under the 2D stationary Navier-Stokes equations, and obtain that the Couette flow \((y, 0)\) is stable under the space of \(\mathcal{D}^{1,q}(\mathbb{R}^2)\) for any \(1<q<\infty\) and unstable in the space of \(\mathcal{D}^{1,\infty}(\mathbb{R}^2)\), which is sharp in this sense. A key observation is the choice of the anisotropic cut-off function. The Poiseuille flow \((y^2, 0)\) is also considered as a by-product, which is stable in the space of \(\mathcal{D}^{1,q}(\mathbb{R}^2)\) with \(\frac{4}{3}<q\leq 4\) via a lemma of Fefferman-Stein.
{© 2022 Wiley-VCH GmbH.}

MSC:

35Q30 Navier-Stokes equations
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] C. J.Amick, On Leray’s problem of steady Navier‐Stokes flow past a body, Acta Math.161 (1988), 71-130. · Zbl 0682.76027
[2] D. D.Gilbarg and H. F.Weinberger, Asymptotic properties of steady plane solutions of the Navier‐Stokes equations with bounded Dirichlet integral, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 5 (1978), no. 2, 381-404. · Zbl 0381.35067
[3] A.Decaster and D.Iftimie, On the asymptotic behaviour of 2D stationary Navier‐Stokes solutions with symmetry conditions, Nonlinearity30 (2017), no. 10, 3951-3978. · Zbl 1377.35214
[4] C.Fefferman and E. M.Stein, \(h^p\) spaces of several variables, Acta Math.129 (1927), no. 3‐4, 137-193. · Zbl 0257.46078
[5] M.Fuchs, Stationary flows of shear thickening fluids in 2D, J. Math. Fluid Mech.14 (2012), no. 1, 43-54. · Zbl 1294.35097
[6] M.Fuchs, Liouville theorems for stationary flows of shear thickening fluids in the plane, J. Math. Fluid Mech.14 (2102), no. 3, 421-444. · Zbl 1254.76055
[7] M.Fuchs and G.Zhang, Liouville theorems for entire local minimizers of energies defined on the class Llogl and for entire solutions of the stationary Prandtl‐Eyring fluid model, Calc. Var. Partial Differential Equations44 (2012), no. 1‐2, 271-295. · Zbl 1252.49075
[8] M.Fuchs and X.Zhong, A note on a Liouville type result of Gilbarg and Weinberger for the stationary Navier‐Stokes equations in 2D. Problems in mathematical analysis, J. Math. Sci.178 (2011), no. 6, 695-703. · Zbl 1291.35218
[9] G.Koch, N.Nadirashvili, G.Seregin, and V.Sverak, Liouville theorems for the Navier‐Stokes equations and applications, Acta Math.203 (2009), 83-105. · Zbl 1208.35104
[10] G. P.Galdi, A.Novotny, and M.Padula, On the two‐dimensional steady‐state problem of a viscous gas in an exterior domain, Pacific J. Math.179 (1997), no. 1, 65-100. · Zbl 0894.76070
[11] G. P.Galdi, An introduction to the mathematical theory of the Navier‐ Stokes equations. Steady‐state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011. · Zbl 1245.35002
[12] G. P.Galdi and C. R.Grisanti, Existence and regularity of steady flows for shear‐thinning liquids in exterior two‐dimensional, Arch. Ration. Mech. Anal.200 (2011), no. 2, 533-559. · Zbl 1229.76026
[13] M.Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, New Jersey, 1983. · Zbl 0516.49003
[14] J.Bedrossian, P.Germain, and N.Masmoudi, Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions, Bull. Amer. Math. Soc. (N.S.)56 (2019), no. 3, 373-414. · Zbl 1445.76042
[15] J.Bedrossian, V.Vicol, and F.Wang, The Sobolev stability threshold for 2D shear flows near Couette, J Nonlinear Sci.28 (2018), 2051-2075. · Zbl 1403.35228
[16] B.Jin and K.Kang, Liouville theorem for the steady‐state non‐Newtonian Navier‐Stokes equations in two dimensions., J. Math. Fluid Mech.16 (2014), no. 2, 275-292. · Zbl 1291.35184
[17] J.Leray, Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl.12 (1933), 1-82. · Zbl 0006.16702
[18] P.Li and L.‐F.Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geometry29 (1989), 421-425. · Zbl 0668.53023
[19] L.Li, Y. Y.Li, and X.Yan, Homogeneous solutions of stationary Navier‐Stokes equations with isolated singularities on the unit sphere. I. One singularity, Arch. Ration. Mech. Anal.227 (2018), no. 3, 1091-1163. · Zbl 1384.35064
[20] L.Li, Y. Y.Li, and X.Yan, Homogeneous solutions of stationary Navier‐Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no‐swirl solutions., J. Differential Equations264 (2018), no. 10, 6082-6108. · Zbl 1392.35208
[21] M.Bildhauer, M.Fuchs, and G.Zhang, Liouville‐type theorems for steady flows of degenerate power law fluids in the plane, J. Math. Fluid Mech.15 (2103), no. 3, 583-616. · Zbl 1273.76076
[22] M.Korobkov, K.Pileckas, and R.Russo, The existence of a solution with finite Dirichlet integral for the steady Navier‐Stokes equations in a plane exterior symmetric domain, J. Math. Pures Appl.(9) 101 (2014), no. 3, 257-274. · Zbl 1331.35263
[23] M.Korobkov, K.Pileckas, and R.Russo, On convergence of arbitrary d‐solution of steady Navier‐Stokes system in 2D exterior domains, Arch. Ration. Mech. Anal.233 (2019), no. 1, 385-407. · Zbl 1416.35187
[24] M.Korobkov, K.Pileckas, and R.Russo, On the steady Navier‐Stokes equations in 2D exterior domains, J. Differential Equations269 (2020), no. 3, 1796-1828. · Zbl 1434.76028
[25] K.Pileckas and R.Russo, On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier‐Stokes problem., Math. Ann.352 (2012), no. 3, 643-658. · Zbl 1233.35161
[26] Q.Chen, T.Li, D.Wei, and Z.Zhang, Transition threshold for the 2‐D Couette flow in a finite channel, Arch. Ration. Mech. Anal.238 (2020), no. 1, 125-183. · Zbl 1446.35094
[27] A.Russo, A note on the exterior two‐dimensional steady‐state Navier‐Stokes problem, J. Math. Fluid Mech.11 (2009), no. 3, 407-414. · Zbl 1186.35148
[28] A.Russo, On the asymptotic behavior of d‐solutions of the plane steady‐state Navier‐Stokes equations, Pacific J. Math.246 (2010), no. 1, 253-256. · Zbl 1192.76011
[29] W.Wang, Liouville‐type theorems for the planer stationary MHD equations with growth at infinity, J. Math. Fluid Mech.23 (2021), no. 4, Paper No. 88, pp. 12. · Zbl 1477.35137
[30] W.Wang and Y.Wang, Liouville‐type theorems for the stationary MHD equations in 2D, Nonlinearity32 (2019), no. 11, 4483-4505. · Zbl 1428.35316
[31] S. T.Yau, Harmonic functions on a complete Riemannian manifold, Comm. Pure Appl. Math.28 (1975), 201-228. · Zbl 0291.31002
[32] G.Zhang, A note on Liouville theorem for stationary flows of shear thickening fluids in the plane, J. Math. Fluid Mech.15 (2013), no. 4, 771-782. · Zbl 1366.35149
[33] G.Zhang, Liouville theorems for stationary flows of shear thickening fluids in 2D, Ann. Acad. Sci. Fenn. Math.40 (2015), no. 2, 889-905. · Zbl 1327.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.