×

Stationary flows of shear thickening fluids in 2D. (English) Zbl 1294.35097

Summary: We investigate the steady flow of a shear thickening generalized Newtonian fluid under homogeneous boundary conditions on a domain in \({\mathbb{R}^{2}}\). We assume that the stress tensor is generated by a potential of the form \({H = h (|{\varepsilon} (u)|)}\), \(\varepsilon (u)\) denoting the symmetric part of the velocity gradient. We prove the existence of strong solutions for a large class of functions \(h\) having the property that \(h'(t)/t\) increases (shear thickening case).

MSC:

35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Adams R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Anzellotti G., Giaquinta M.: Existence of the displacement field for an elasto-plastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32, 101–136 (1980) · Zbl 0465.73022 · doi:10.1007/BF01298185
[3] Apushkinskaya D., Bildhauer M., Fuchs M.: Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7(2), 261–297 (2005) · Zbl 1162.76375 · doi:10.1007/s00021-004-0118-6
[4] Beirão da Veiga H.: On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions. Commun. Pure Appl. Math. 58, 552–577 (2005) · Zbl 1075.35045 · doi:10.1002/cpa.20036
[5] Beirão da Veiga, H.: Navier–Stokes equations with shear thickening viscosity. Regularity up to the boundary. J. Math. Fluid Mech. (2008). doi: 10.1007/s00021-008-0257-2 · Zbl 1213.76047
[6] Beirão da Veiga, H.: A note on the global integrability, for any finite power, of the full gradient for a class of power models, p < 2. In: Advances in Mathematical Fluid Mechanics, pp. 37–42. Springer, Berlin (2010) · Zbl 1374.35278
[7] Beirãoda Veiga H., Kaplický P., Ružička M.: Regularity theorems, up to the boundary, for shear thickening fluids . Comp. Rend. Math. 348(9–10), 541–544 (2010) · Zbl 1352.35085 · doi:10.1016/j.crma.2010.04.010
[8] Bildhauer M., Fuchs M.: Differentiability and higher integrability results for local minimizers of splitting type variational integrals in 2D with applications to nonlinear Hencky-materials. Calc. Var. 37(1–2), 167–186 (2010) · Zbl 1189.49057 · doi:10.1007/s00526-009-0257-y
[9] Bildhauer M., Fuchs M., Zhong X.: A lemma on the higher integrability of functions with applications to the regularity theory of two dimensional generalized Newtonian fluids. Manuscr. Math. 116(2), 135–156 (2005) · Zbl 1116.49018 · doi:10.1007/s00229-004-0523-4
[10] Breit, D., Fuchs, M.: The nonlinear Stokes problem with general potentials having superquadratic growth. J. Math. Fluid Mech. (2010). doi: 10.1007/s00021-010-0023-0 · Zbl 1270.35335
[11] Byun S.-S., Yao F., Zhou S.: Gradient estimates in Orlicz space for nonlinear elliptic equations. J. Funct. Anal. 255, 1851–1873 (2008) · Zbl 1156.35038 · doi:10.1016/j.jfa.2008.09.007
[12] Frehse J., Málek J., Steinhauer M.: On analysis of steady flows of fluids with shear dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003) · Zbl 1050.35080 · doi:10.1137/S0036141002410988
[13] Fuchs M.: A note on non-uniformly elliptic Stokes-type systems in two variables. J. Math. Fluid Mech. 12, 266–279 (2010) · Zbl 1195.76148 · doi:10.1007/s00021-008-0285-y
[14] Fuchs M.: Korn inequalities in Orlicz spaces. Irish Math. Soc. Bull. 65, 5–9 (2010) · Zbl 1237.26013
[15] Galdi, G.: An introduction to the mathematical theory of the Navier-Stokes equations vol. I. Springer Tracts in Natural Philosophy vol. 38. Springer, Berlin (1994) · Zbl 0949.35004
[16] Galdi, G.: An introduction to the mathematical theory of the Navier–Stokes equations vol. II. Springer Tracts in Natural Philosophy, vol. 39. Springer, Berlin (1994) · Zbl 0949.35004
[17] Jia H., Li D., Wang L.: Regularity theory in Orlicz spaces for elliptic equations in Reifenberg domains. J. Math. Anal. Appl. 334, 804–817 (2007) · Zbl 1178.35154 · doi:10.1016/j.jmaa.2006.12.081
[18] Kaplický P.: Regularity of flow of anisotropic fluid. J. Math. Fluid Mech. 10, 71–88 (2008) · Zbl 1162.76304 · doi:10.1007/s00021-006-0217-7
[19] Kaplický P., Málek J., Stará J.: C 1,{\(\alpha\)} -solutions to a class of nonlinear fluids in two dimensions–stationary Dirichlet problem. Zapiski Nauchnyh Seminarow POMI 259, 122–144 (1999)
[20] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Gordon And Breach, New York (1969) · Zbl 0184.52603
[21] Málek, J., Necas, J., Rokyta, M., Ružička, M.: Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)
[22] Mosolov P.P., Mjasnikov V.P.: On the correctness of boundary value problems in the mechanics of continuous media. Math. USSR Sbornik 17(2), 257–267 (1972) · Zbl 0264.73011 · doi:10.1070/SM1972v017n02ABEH001503
[23] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991) · Zbl 0724.46032
[24] Reshetnyak Y.G.: Estimates for certain differential operators with finite dimensional kernel. Sibirsk. Mat. Zh. 11, 414–428 (1970) · Zbl 0233.35010
[25] Wolf J.: Interior C 1, {\(\alpha\)}-regularity of weak solutions to the equations of stationary motion to certain non-Newtonian fluids in two dimensions. Boll U.M.I.(8) 10B, 317–340 (2007) · Zbl 1140.76007
[26] Zhou, S.: Private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.