×

Traveling waves for discrete reaction-diffusion equations in the general monostable case. (English) Zbl 1527.35118

Summary: We consider general fully nonlinear discrete reaction-diffusion equations \(u_t = F [u]\), described by some function \(F\). In the positively monostable case, we study monotone traveling waves of velocity \(c\), connecting the unstable state 0 to a stable state 1. Under Lipschitz regularity of \(F\), we show that there is a minimal velocity \(c_F^+\) such that there is a branch of traveling waves with velocities \(c \geq c_F^+\) and no traveling waves for \(c < c_F^+\). We also show that the map \(F \mapsto c_F^+\) is not continuous for the \(L^\infty\) norm on \(F\). Assuming more regularity of \(F\) close to the unstable state 0, we show that \(c_F^+ \geq c_F^\ast\), where the velocity \(c_F^\ast\) can be computed from the linearization of the equation around the unstable state 0. In addition, we show that the inequality can be strict for certain nonlinearities \(F\). On the contrary, under a KPP condition on \(F\), we show the equality \(c_F^+ = c_F^\ast\). Finally, we provide an example in which \(c_F^+\) is negative.

MSC:

35C07 Traveling wave solutions
35D40 Viscosity solutions to PDEs
35K57 Reaction-diffusion equations
39A12 Discrete version of topics in analysis

References:

[1] Al Haj, M.; Forcadel, N.; Monneau, R., Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models. Arch. Ration. Mech. Anal., 1, 45-99 (2013) · Zbl 1285.82049
[2] Al Haj, M.; Monneau, R., Existence of traveling waves for Lipschitz discrete dynamics. Monostable case as a limit of bistable cases (2014), original preprint
[3] Al Haj, M.; Monneau, R., The velocity diagram of traveling waves for discrete reaction-diffusion equations (10 Sep 2022), preprint · Zbl 1523.39001
[4] Al Haj, M.; Monneau, R., The velocity diagram for traveling waves. C. R. Math., 777-782 (2023) · Zbl 1514.35082
[5] Aronson, D. G.; Weinberger, H. F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, 5-49 · Zbl 0325.35050
[6] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 1, 33-76 (1978) · Zbl 0407.92014
[7] Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications (1994), Springer-Verlag: Springer-Verlag Paris · Zbl 0819.35002
[8] Berestycki, H.; Hamel, F., Front propagation in periodic excitable media. Commun. Pure Appl. Math., 8, 949-1032 (2002) · Zbl 1024.37054
[9] Berestycki, H.; Hamel, F.; Nadirashvili, N., Propagation speed for reaction-diffusion equations in general domains. C. R. Math. Acad. Sci. Paris, 3, 163-168 (2004) · Zbl 1049.35100
[10] Braun, O. M.; Kivshar, Y. S., The Frenkel-Kontorova ModelConcepts, Methods and Applications (2004), Springer-Verlag · Zbl 1140.82001
[11] Carpio, A.; Chapman, S.; Hastings, S.; Mcleod, J. B., Wave solutions for a discrete reaction-diffusion equation. Eur. J. Appl. Math., 4, 399-412 (2000) · Zbl 0968.35059
[12] Chen, X.; Fu, S.-C.; Guo, J. S., Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal., 1, 233-258 (2006) · Zbl 1117.34060
[13] Chen, X.; Guo, J. S., Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Differ. Equ., 2, 549-569 (2002) · Zbl 1010.39004
[14] Chen, X.; Guo, J. S., Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann., 1, 123-146 (2003) · Zbl 1086.34011
[15] Chen, X.; Guo, J. S.; Wu, C.-C., Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal., 2, 189-236 (2008) · Zbl 1152.37033
[16] Coville, J.; Dávile, J.; Martínez, S., Non-local anisotropic dispersal with monostable nonlinearity. J. Differ. Equ., 12, 3080-3118 (2008) · Zbl 1148.45011
[17] Fisher, R. A., The advance of advantageous genes. Ann. Eugen., 335-369 (1937)
[18] Forcadel, N.; Imbert, C.; Monneau, R., Homogenization of fully overdamped Frenkel-Kontorova models. J. Differ. Equ., 3, 1057-1097 (2009) · Zbl 1171.49023
[19] Fu, S.-C.; Guo, J.-S.; Shieh, S.-Y., Traveling wave solutions for some discrete quasilinear parabolic equations. Nonlinear Anal., 8, 1137-1149 (2002) · Zbl 1092.34012
[20] Guo, J.-S.; Hamel, F., Front propagation for discrete periodic monostable equations. Math. Ann., 3, 489-525 (2006) · Zbl 1116.35063
[21] Guo, J.-S.; Wu, C.-H., Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J. Math., 2, 327-346 (2008) · Zbl 1155.34016
[22] Guo, J.-S.; Wu, C.-H., Front propagation for a two dimensional periodic monostable lattice dynamical system. Discrete Contin. Dyn. Syst., 1, 197-223 (2010) · Zbl 1195.34118
[23] Hadeler, K. P.; Rothe, F., Travelling fronts in nonlinear diffusion equations. J. Math. Biol., 3, 251-263 (1975) · Zbl 0343.92009
[24] Hamel, F., Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J. Math. Pures Appl. (9), 4, 355-399 (2008) · Zbl 1171.35061
[25] Hamel, F.; Nadirashvili, N., Travelling fronts and entire solutions of the Fisher-KPP equation in \(\mathbb{R}^N\). Arch. Ration. Mech. Anal., 2, 91-163 (2001) · Zbl 0987.35072
[26] Hamel, F.; Roques, L., Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc., 2, 345-390 (2011) · Zbl 1219.35035
[27] Hou, X.; Li, Y.; Meyer, K. R., Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete Contin. Dyn. Syst., 1, 265-290 (2010) · Zbl 1194.35093
[28] Hudson, W.; Zinner, B., Existence of traveling waves for a generalized discrete Fisher’s equation. Commun. Appl. Nonlinear Anal., 3, 23-46 (1994) · Zbl 0859.34006
[29] Kolmogorov, A. N.; Petrovsky, I. G.; Piskunov, N. S., Study of the diffusion equation with growth of quantity of matter and its application to biological problem. Bull. Univ. Moscow, Ser. Internat. Sect. A, 1-25 (1937)
[30] Li, B.; Weinberger, H. F.; Lewis, M. A., Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci., 1, 82-98 (2005) · Zbl 1075.92043
[31] Nadin, G.; Rossi, L., Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J. Math. Pures Appl., 6, 633-653 (2012) · Zbl 1388.35101
[32] Volpert, V.; Petrovskii, S., Reaction-diffusion waves in biology. Phys. Life Rev., 4, 267-310 (2009)
[33] Weinberger, H. F., Long-time behavior of a class of biological models. SIAM J. Math. Anal., 3, 353-396 (1982) · Zbl 0529.92010
[34] Yagisita, H., Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci., 4, 925-953 (2009) · Zbl 1191.35093
[35] Zinner, B.; Harris, G.; Hudson, W., Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ., 1, 46-62 (1993) · Zbl 0778.34006
[36] Zlatoš, A., Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations. J. Math. Pures Appl. (9), 1, 89-102 (2012) · Zbl 1252.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.