×

Homogenization of fully overdamped Frenkel-Kontorova models. (English) Zbl 1171.49023

The authors consider the simplest Frenkel-Kontorova model, which is a special and important case of a system of ODEs describing the motion of particles in interaction with their neighbours. They call the considered model “overdamped” since they neglet the acceleration term so the system considered is the following \[ \frac{d U_i}{dt} = U_{i+1} - 2 U_i + U_{i-1} + \sin (2 \pi U_i) + L \, , \hskip20pt t > 0 \, . \] They study the behaviour as the number of particles goes to infinity. One of the main result states that the limiting dynamics is described by a first order Hamilton-Jacobi equation. Some qualitative properties of the limit Hamiltonian are given.

MSC:

49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35F20 Nonlinear first-order PDEs
45K05 Integro-partial differential equations
47G20 Integro-differential operators
35B10 Periodic solutions to PDEs
39A12 Discrete version of topics in analysis
Full Text: DOI

References:

[1] Aubry, S., The twist map, the extended Frenkel-Kontorova model and the devil’s staircase, Phys. D, 7, 240-258 (1983) · Zbl 0559.58013
[2] Aubry, S., Exact models with a complete Devil’s staircase, J. Phys. C, 16, 2497-2508 (1983)
[3] Aubry, S.; Le Daeron, P. Y., The discrete Frenkel-Kontorova model and its extensions, Phys. D, 8, 381-422 (1983) · Zbl 1237.37059
[4] Bacaër, N., Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations, M2AN Math. Model. Numer. Anal., 35, 1185-1195 (2001) · Zbl 1037.65054
[5] Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi, Math. Appl. (Berlin), vol. 17 (1994), Springer-Verlag: Springer-Verlag Paris · Zbl 0819.35002
[6] Barles, G., Some homogenization results for non-coercive Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 30, 4, 449-466 (2007) · Zbl 1136.35004
[7] Boccardo, L.; Murat, F., Remarques sur l’homogénéisation de certains problèmes quasi-linéaires, Port. Math., 41, 1-4, 535-562 (1984) · Zbl 0524.35042
[8] Braun, O. M.; Kivshar, Y. S., The Frenkel-Kontorova Model, Concepts, Methods and Applications (2004), Springer-Verlag · Zbl 1140.82001
[9] Crandall, M. G.; Ishii, H.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015
[10] R. De La Llave, KAM theory for equilibrium states in 1-D statistical mechanics models, preprint 2005-310, University of Texas at Austin, 2005; R. De La Llave, KAM theory for equilibrium states in 1-D statistical mechanics models, preprint 2005-310, University of Texas at Austin, 2005
[11] Evans, L. C., The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111, 3-4, 359-375 (1989) · Zbl 0679.35001
[12] N. Forcadel, C. Imbert, R. Monneau, Homogenization of some systems of particles with two-body interactions and dislocation dynamics, Discrete Contin. Dyn. Syst. Ser. A, in press; N. Forcadel, C. Imbert, R. Monneau, Homogenization of some systems of particles with two-body interactions and dislocation dynamics, Discrete Contin. Dyn. Syst. Ser. A, in press · Zbl 1154.35306
[13] Floria, L. M.; Mazo, J. J., Dissipative dynamics of the Frenkel-Kontorova model, Adv. in Phys., 45, 6, 505-598 (1996)
[14] Hu, B.; Qin, W.-X.; Zheng, Z., Rotation number of the overdamped Frenkel-Kontorova model with ac-driving, Phys. D, 208, 172-190 (2005) · Zbl 1086.34044
[15] Imbert, C.; Monneau, R., Homogenization of first order equations with \((u / \operatorname{\&z.epsiv;})\)-periodic Hamiltonians. Part I: Local equations, Arch. Ration. Mech. Anal., 187, 1, 49-89 (2008) · Zbl 1127.70009
[16] H.-C. Kao, S.-C. Lee, W.-J. Tzeng, Exact solution of Frenkel-Kontorova models with a complete devil’s staircase in higher dimensions, preprint; H.-C. Kao, S.-C. Lee, W.-J. Tzeng, Exact solution of Frenkel-Kontorova models with a complete devil’s staircase in higher dimensions, preprint
[17] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0878.58020
[18] Kontorova, T.; Frenkel, Y. I., On the theory of plastic deformation and doubling, Zh. Eksp. Teor. Fiz., 8 (1938), 89-, 1340-, 1349- (in Russian) · Zbl 0021.08502
[19] P.-L. Lions, G.C. Papanicolaou, S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations, unpublished preprint, 1986; P.-L. Lions, G.C. Papanicolaou, S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations, unpublished preprint, 1986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.