×

Spectral stability and instability of solitary waves of the Dirac equation with concentrated nonlinearity. (English) Zbl 1527.35043

Summary: We consider the nonlinear Dirac equation with Soler-type nonlinearity concentrated at one point and present a detailed study of the spectrum of linearization at solitary waves. We then consider two different perturbations of the nonlinearity which break the \(\mathbf{SU}(1,1)\) symmetry: the first preserving and the second breaking the parity symmetry. We show that a particular perturbation which breaks the \(\mathbf{SU}(1,1)\) symmetry but not the parity symmetry also preserves the spectral stability of solitary waves. Then we consider a particular perturbation which breaks both the \(\mathbf{SU}(1,1)\) symmetry and the parity symmetry and show that this perturbation destroys the stability of weakly relativistic solitary waves. This instability is due to the bifurcations of positive-real-part eigenvalues from the embedded eigenvalues \(\pm 2\omega \mathrm{i}\).

MSC:

35B35 Stability in context of PDEs
35C08 Soliton solutions
35P05 General topics in linear spectral theory for PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations

References:

[1] R. G. R. Adami Dell’Antonio Figari, The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 477-500 (2003) · Zbl 1028.35137 · doi:10.1016/S0294-1449(02)00022-7
[2] S. Albeverio, F. Gesztesy and R. Høegh-Krohn et al., Solvable Models in Quantum Mechanics, American Mathematical Society, Providence, RI, 2005, second edition. · Zbl 1078.81003
[3] D. J. E. Aldunate Ricaud Stockmeyer, Results on the spectral stability of standing wave solutions of the Soler model in 1-D, Commun. Math. Phys., 401, 227-273 (2023) · Zbl 1522.35428 · doi:10.1007/s00220-023-04646-4
[4] R. A. Adami Teta, A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Funct. Anal., 180, 148-175 (2001) · Zbl 0979.35130 · doi:10.1006/jfan.2000.3697
[5] S. L. Benvegnù Dabrowski, Relativistic point interaction, Lett. Math. Phys., 30, 159-167 (1994) · Zbl 0788.47054 · doi:10.1007/BF00939703
[6] G. A. Berkolaiko Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7, 13-31 (2012) · Zbl 1247.35117 · doi:10.1051/mmnp/20127202
[7] W. R. L. Borrelli Carlone Tentarelli, Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit, SIAM J. Math. Anal., 51, 1046-1081 (2019) · Zbl 1411.35263 · doi:10.1137/18M1211714
[8] W. R. L. Borrelli Carlone Tentarelli, On the nonlinear Dirac equation on noncompact metric graphs, J. Differ. Equ., 278, 326-357 (2021) · Zbl 1457.35045 · doi:10.1016/j.jde.2021.01.005
[9] N. S. Boussaïd Cuccagna, On stability of standing waves of nonlinear Dirac equations, Commun. Partial Differ. Equ., 37, 1001-1056 (2012) · Zbl 1251.35098 · doi:10.1080/03605302.2012.665973
[10] N. A. Boussaïd Comech, On spectral stability of the nonlinear Dirac equation, J. Funct. Anal., 271, 1462-1524 (2016) · Zbl 1457.35046 · doi:10.1016/j.jfa.2016.04.013
[11] N. A. Boussaïd Comech, Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM J. Math. Anal., 49, 2527-2572 (2017) · Zbl 1375.35427 · doi:10.1137/16M1081385
[12] N. A. Boussaïd Comech, Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models, Commun. Pure Appl. Anal., 17, 1331-1347 (2018) · Zbl 1393.35196 · doi:10.3934/cpaa.2018065
[13] N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019. · Zbl 1426.35026
[14] N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, J. Funct. Anal., 277 (2019), 68 pp. · Zbl 1426.35026
[15] N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. arXiv: 2101.11979. · Zbl 1485.35300
[16] N. A. Boussaïd Comech, Limiting absorption principle and virtual levels of operators in Banach spaces, Ann. Math. Quebec, 46, 161-180 (2022) · Zbl 1485.35300 · doi:10.1007/s40316-021-00181-7
[17] N. Boussaïd, Stable directions for small nonlinear Dirac standing waves, Commun. Math. Phys., 268, 757-817 (2006) · Zbl 1127.35060 · doi:10.1007/s00220-006-0112-3
[18] N. Boussaïd, On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case, SIAM J. Math. Anal., 40, 1621-1670 (2008) · Zbl 1167.35438 · doi:10.1137/070684641
[19] F. E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann., 142, 22-130 (1961) · Zbl 0104.07502 · doi:10.1007/BF01343363
[20] V. A. E. Buslaev Komech Kopylova, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33, 669-705 (2008) · Zbl 1185.35247 · doi:10.1080/03605300801970937
[21] C. R. D. Cacciapuoti Carlone Noja, The one-dimensional Dirac equation with concentrated nonlinearity, SIAM J. Math. Anal., 49, 2246-2268 (2017) · Zbl 1371.35236 · doi:10.1137/16M1084420
[22] C. D. D. Cacciapuoti Finco Noja, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., 104, 1557-1570 (2014) · Zbl 1303.81072 · doi:10.1007/s11005-014-0725-y
[23] R. M. L. Carlone Correggi Tentarelli, Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 257-294 (2019) · Zbl 1410.35196 · doi:10.1016/j.anihpc.2018.05.003
[24] A. E. Comech Kopylova, Orbital stability and spectral properties of solitary waves of Klein-Gordon equation with concentrated nonlinearity, Comm. Pure Appl. Anal., 20, 2187-2209 (2021) · Zbl 1478.35080 · doi:10.3934/cpaa.2021063
[25] A. T. V. A. Comech Phan Stefanov, Asymptotic stability of solitary waves in generalized Gross-Neveu model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 157-196 (2017) · Zbl 1357.35083 · doi:10.1016/j.anihpc.2015.11.001
[26] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2018, 2 edn. · Zbl 1447.47006
[27] M. B. W. R. E. Erdoğan Green Toprak, Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies, Amer. J. Math., 141, 1217-1258 (2019) · Zbl 1428.35432 · doi:10.1353/ajm.2019.0031
[28] A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento, 20, 210-212 (1977) · doi:10.1007/BF02785129
[29] F. P. Gesztesy Šeba, New analytically solvable models of relativistic point interactions, Lett. Math. Phys., 13, 345-358 (1987) · Zbl 0646.60107 · doi:10.1007/BF00401163
[30] A. T. Jensen Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46, 583-611 (1979) · Zbl 0448.35080 · doi:10.1215/S0012-7094-79-04631-3
[31] A. G. Jensen Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 717-754 (2001) · Zbl 1029.81067 · doi:10.1142/S0129055X01000843
[32] A. I. A. A. Komech Komech, Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator, Russ. J. Math. Phys., 14, 164-173 (2007) · Zbl 1125.35092 · doi:10.1134/S1061920807020057
[33] A. A. Komech Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl., 93, 91-111 (2010) · Zbl 1180.35124 · doi:10.1016/j.matpur.2009.08.011
[34] A. E. D. Komech Kopylova Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11, 1063-1079 (2012) · Zbl 1282.35352 · doi:10.3934/cpaa.2012.11.1063
[35] A. A. Kolokolov, Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14, 426-428 (1973) · doi:10.1007/BF00850963
[36] D. A. Noja Posilicano, Wave equations with concentrated nonlinearities, J. Phys. A, 38, 5011-5022 (2005) · Zbl 1085.81039 · doi:10.1088/0305-4470/38/22/022
[37] D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 27 pp. · Zbl 1279.35083
[38] M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1, 2766-2769 (1970) · doi:10.1103/PhysRevD.1.2766
[39] D. R. Yafaev, Mathematical Scattering Theory, vol. 158 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. · Zbl 1197.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.