×

Numerical investigation on the Hill’s type lunar problem with homogeneous potential. (English) Zbl 1526.70013

Summary: We consider the planar Hill’s lunar problem with a homogeneous gravitational potential. The investigation of the system is twofold. First, the starting conditions of the trajectories are classified into three classes, that is, bounded, escaping, and collisional. Second, we study the no-return property of the Lagrange point \(L_2\) and we observe that the escaping trajectories are scattered exponentially. Moreover, it is seen that in the supercritical case, with the potential exponent \(\alpha \geq 2\), the basin boundaries are smooth. On the other hand, in the subcritical case, with \(\alpha < 1\) the boundaries between the different types of basins exhibit fractal properties.

MSC:

70F15 Celestial mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

Mathematica

References:

[1] Abraham, R.; Marsden, J., Foundations of mechanics (2008), Providence: Amer. Math. Soc., Providence
[2] Meyer, KR; Offin, DC, Introduction to Hamiltonian dynamical systems and the n-body problem. Applied mathematical sciences (2017), New York: Springer, New York · Zbl 1372.70002 · doi:10.1007/978-3-319-53691-0
[3] Moser, JK; Siegel, CL, Lectures on celestial mechanics. Classics in mathematics (1995), New York: Springer, New York · Zbl 0817.70001
[4] Gordon, WB, Conservative dynamical systems involving strong forces, Trans A M S, 204, 113-135 (1975) · Zbl 0276.58005 · doi:10.1090/S0002-9947-1975-0377983-1
[5] McGehee, R., Double collisions for a classical particle system with nongravitational interactions, Comment Math Helvetici, 56, 524-557 (1981) · Zbl 0498.70015 · doi:10.1007/BF02566226
[6] Waalkens, H.; Burbanks, A.; Wiggins, S., Escape from planetary neighborhoods, Mon Not R Astron Soc, 361, 763-775 (2005) · doi:10.1111/j.1365-2966.2005.09237.x
[7] Zotos, E., Investigating the planar circular restricted three-body problem with strong gravitational field, Meccanica, 52, 1995-2021 (2017) · Zbl 1375.70034 · doi:10.1007/s11012-016-0548-2
[8] Deng, Y.; Ibrahim, S., Global existence and singularity of the n-body problem with strong force, Qual Theory Dyn Syst, 19, 49 (2020) · Zbl 1448.70025 · doi:10.1007/s12346-020-00387-0
[9] Deng Y, Ibrahim S (2020) Global existence and singularity of the Hill’s type lunar problem with strong potential. arXiv:org/abs/2010.05130
[10] Nakanishi, K.; Schlag, W., Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc Var PDE, 44, 1-45 (2012) · Zbl 1237.35148 · doi:10.1007/s00526-011-0424-9
[11] Akahori T, Ibrahim S, Kikuchi H, Nawa H Global dynamics above the ground state energy for the combined power-type nonlinear Schrödinger equations with energy-critical growth at low frequencies. (To appear in Memoirs of the A.M.S.) · Zbl 1491.35003
[12] Benet, L.; Trautman, D.; Seligman, T., Chaotic scattering in the restricted three-body problem I. The Copenhagen problem, Celest Mech Dyn Astron, 66, 203-228 (1996) · Zbl 0891.70006 · doi:10.1007/BF00054965
[13] Deng Y, Ibrahim S, Nakanishi K Dynamics classification for the supercritical Hill problem. (in preparation)
[14] Meyer, KR; Schmidt, DS, Hill’s lunar equations and the three-body problem, J Diff Eq, 44, 263-272 (1982) · Zbl 0485.70012 · doi:10.1016/0022-0396(82)90016-X
[15] Aguirre, J.; Vallego, JC; Sanjuán, MAF, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys Rev E, 64, 066208 (2001) · doi:10.1103/PhysRevE.64.066208
[16] Aguirre, J.; Viana, RL; Sanjuán, MAF, Fractal structures in nonlinear dynamics, Rev Mod Phys, 81, 333-386 (2009) · doi:10.1103/RevModPhys.81.333
[17] Daza AA, Wagemakers B, Georgeot D, Guéry-Odelin MAF, Sanjuán (2016) Basin entropy: a new tool to analyze uncertainty in dynamical systems. Sci Rep 6, article number: 31416
[18] Skokos, C., Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits, J Phys A Math Gen, 34, 10029-10043 (2001) · Zbl 1004.37021 · doi:10.1088/0305-4470/34/47/309
[19] Press, HP; Teukolsky, SA; Vetterling, BP, Flannery: numerical recipes in FORTRAN 77 (1992), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0778.65002
[20] Wolfram, S., The mathematica book (2003), Champaign: Wolfram Media, Champaign · Zbl 0924.65002
[21] Nagler, J., Crash test for the Copenhagen problem, Phys Rev E, 69, 066218 (2004) · doi:10.1103/PhysRevE.69.066218
[22] Nagler, J., Crash test for the restricted three-body problem, Phys Rev E, 71, 026227 (2005) · doi:10.1103/PhysRevE.71.026227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.