×

Bifurcation theory for SPDEs: finite-time Lyapunov exponents and amplitude equations. (English) Zbl 1526.37067

Summary: We consider a stochastic partial differential equation close to bifurcation of pitchfork type, where a one-dimensional space changes its stability. For finite-time Lyapunov exponents we characterize regions depending on the distance from bifurcation and the noise strength where finite-time Lyapunov exponents are positive and thus detect bifurcations. One technical tool is the reduction of the essential dynamics of the infinite-dimensional stochastic system to a simple ordinary stochastic differential equation, which is valid close to the bifurcation.

MSC:

37H20 Bifurcation theory for random and stochastic dynamical systems
37L55 Infinite-dimensional random dynamical systems; stochastic equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Agélas, L., Global regularity of solutions of equation modeling epitaxy thin film growth in \(\mathbb{R}^d, d=1,2\) , J. Evol. Equ., 15 (2015), pp. 89-106. · Zbl 1323.35064
[2] Arnold, L., Random Dynamical Systems, , Springer, Berlin, 1998. · Zbl 0906.34001
[3] Barabási, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995. · Zbl 0838.58023
[4] Barret, F., Sharp asymptotics of metastable transition times for one dimensional SPDEs, Ann. Inst. H. Poincaré Probab. Stat., 51 (2015), pp. 129-166. · Zbl 1319.82019
[5] Bedrossian, J., Blumenthal, A., and Punshon-Smith, S., Lagrangian chaos and scalar advection in stochastic fluid mechanics, J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 1893-1990. · Zbl 1496.76040
[6] Bedrossian, J., Blumenthal, A., and Punshon-Smith, S., A regularity method for lower bounds on the Lyapunov exponent for stochastic differential equations, Invent. Math., 227 (2022), pp. 429-516. · Zbl 1490.37073
[7] Bedrossian, J., Blumenthal, A., and Punshon-Smith, S., Lower Bounds on the Lyapunov Exponents of Stochastic Differential Equations, arXiv:2109.01227, 2021. · Zbl 1465.37099
[8] Berglund, N. and Gentz, B., Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramer’s law and beyond, Electron. J. Probab., 18 (2013), pp. 1-58. · Zbl 1285.60060
[9] Bianchi, L. A., Blömker, D., and Schneider, G., Modulation equation and SPDEs on unbounded domains, Comm. Math. Phys., 371 (2019), pp. 19-54. · Zbl 1435.35292
[10] Blömker, D. and Hairer, M., Multiscale expansion of invariant measures for SPDEs, Comm. Math. Phys., 251 (2004), pp. 515-555. · Zbl 1066.60057
[11] Blömker, D., Schneider, G., and Maier-Paape, S., The stochastic Landau equation as an amplitude equation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), pp. 527-541. · Zbl 1004.60074
[12] Blömker, D., Approximation of the stochastic Rayleigh-Bénard problem near the onset of convection and related problems, Stoch. Dyn., 5 (2005), pp. 441-474. · Zbl 1092.60023
[13] Blömker, D., Amplitude Equations for Stochastic Partial Differential Equations, Interdiscip. Math. Sci. 3, World Scientific, Hackensack, NJ, 2007. · Zbl 1128.60049
[14] Blömker, D. and Hairer, M., Amplitude equations for SPDEs: Approximate centre manifolds and invariant measures, in Probability and Partial Differential Equations in Modern Applied Mathematics, Springer, New York, 2005, pp. 41-59. · Zbl 1098.60057
[15] Blömker, D., Hairer, M., and Pavliotis, G., Modulation Equations: Stochastic Bifurcation in Large Domains, Comm. Math. Phys., 258 (2015), pp. 479-512. · Zbl 1084.60038
[16] Blömker, D. and Mohammed, W. W., Amplitude equations for SPDEs with cubic nonlinearities, Stochastics, 85 (2013), pp. 181-215. · Zbl 1291.60127
[17] Blömker, D. and Fu, H., The impact of multiplicative noise in SPDEs close to bifurcation via amplitude equations, Nonlinearity, 33 (2020). · Zbl 1464.60058
[18] Blömker, D. and Neamţu, A., Amplitude equations for SPDEs driven by fractional additive noise with small Hurst parameter, Stoch. Dyn., 22 (2022), 2240013. · Zbl 1494.60037
[19] Blömker, D. and Yuan, S., Modulation and amplitude equations on bounded domains for nonlinear SPDEs driven by cylindrical \(\alpha \) -stable Lévy processes, SIAM J. Appl. Dyn. Syst., 21 (2022), pp. 1748-1777, . · Zbl 1492.60197
[20] Blumenthal, A., Engel, M., and Neamţu, A., On the Pitchfork Bifurcation for the Chafee-Infante Equation with Additive Noise, arXiv:2108.11073, 2021.
[21] Callaway, M., Doan, T. S., Lamb, J. S. W., and Rasmussen, M., The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with additive noise, Ann. Inst. H. Poincaré Probab. Stat., 53 (2017), pp. 1548-1574. · Zbl 1383.37037
[22] Caraballo, T., Crauel, H., Langa, J. A., and Robinson, J. C., The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), pp. 373-382. · Zbl 1173.60022
[23] Crauel, H. and Flandoli, F., Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10 (1998), pp. 259-274. · Zbl 0907.34042
[24] Cross, M. C. and Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Modern Phys., 65 (1993), 851. · Zbl 1371.37001
[25] Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. · Zbl 0761.60052
[26] Debussche, A., Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77 (1998), pp. 967-988. · Zbl 0919.58044
[27] Flandoli, F., Gess, B., and Scheutzow, M., Synchronization by noise, Probab. Theory Related Fields, 168 (2017), pp. 511-556. · Zbl 1385.37017
[28] Gess, B. and Tsatsoulis, P., Lyapunov Exponents and Synchronisation by Noise for Systems of SPDEs, arXiv:2207.09820, 2022. · Zbl 1454.60093
[29] Lai, Z.-W. and Das Sarma, S., Kinetic growth with surface relaxation: Continuum versus atomistic models, Phys. Rev. Lett., 66 (1991), 2348.
[30] Maslowski, B. and Schmalfuß, B., Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl., 22 (2004), pp. 1577-1607. · Zbl 1062.60060
[31] Qualls, C. and Watanabe, H., An asymptotic 0-1 behavior of Gaussian processes, Ann. Math. Statist., 42 (1971), pp. 2029-2035. · Zbl 0239.60031
[32] Rasmussen, M., Finite-time attractivity and bifurcation for nonautonomous differential equations, Differ. Equ. Dyn. Syst., 18 (2010), pp. 57-78. · Zbl 1213.34070
[33] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., , Springer, New York, 1997. · Zbl 0871.35001
[34] Roubíček, T., Nonlinear Partial Differential Equations with Applications, 2nd ed., , Birkhäuser, Basel, 2013. · Zbl 1270.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.