×

Global existence and finite time blow-up for a class of fractional \(p\)-Laplacian Kirchhoff type equations with logarithmic nonlinearity. (English) Zbl 1525.35238


MSC:

35R11 Fractional partial differential equations
35B44 Blow-up in context of PDEs
35A15 Variational methods applied to PDEs
35J60 Nonlinear elliptic equations
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] M, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asymptotic Anal., 118, 313-329 (2020) · Zbl 1454.35305 · doi:10.3233/ASY-191564
[2] M, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198, 1-20 (2020) · Zbl 1440.35194
[3] H, Global existence and blow-Up for a parabolic problem of Kirchhoff type with Logarithmic nonlinearity, Appl. Math. Optim., 8, 1-57 (2019)
[4] O, Existence of solution for a class of nonlocal problem via dynamical methods, Nonlinear Anal., 3, 1-17 (2020)
[5] M, Existence of solutions for a critical fractional Kirchhoff type problem in N, Sci. China Math., 60, 1647-1660 (2017) · Zbl 1387.35610 · doi:10.1007/s11425-015-0792-2
[6] D, Existence and concentration of solutions for singularly perturbed doubly nonlocal elliptic equations, Commun. Contemp. Math., 22, 1-37 (2020) · Zbl 1437.35308
[7] W, The blow-up solutions for a Kirchhoff-type wave equation with different-sign nonlinear source terms in high energy Level, Per. Oc. Univ. China., 48, 232-236 (2018)
[8] H, Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential, Commun. Pure Appl. Anal., 17, 1875-1897 (2018) · Zbl 1398.35055 · doi:10.3934/cpaa.2018089
[9] Q, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst., 13, 2095-2107 (2020) · Zbl 1448.35551
[10] M, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity, 31, 3228-3250 (2018) · Zbl 1393.35090 · doi:10.1088/1361-6544/aaba35
[11] J, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput., 265, 807-818 (2015) · Zbl 1410.35237
[12] E, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms, Math. Methods Appl. Sci., 11, 5468-5488 (2019) · Zbl 1437.35089
[13] Y, Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math., 141, 263-285 (2019) · Zbl 1437.35449 · doi:10.1016/j.apnum.2019.01.002
[14] N, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489, 1-18 (2020) · Zbl 1439.35053
[15] X, Global existence and blowup for a Kirchhoff-type hyperbolic problem with logarithmic nonlinearity, Appl. Math. Optim., 7, 1-38 (2020)
[16] Y, Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional \(p\)-Laplacian, Electron. J. Differ. Equ., 155, 1-22 (2018) · Zbl 1396.35073
[17] R, Blowup and global existence of solutions to a parabolic equation associated with the fraction \(p\)-Laplacian, Commun. Pure Appl. Anal., 18, 1205-1226 (2019) · Zbl 1409.35219 · doi:10.3934/cpaa.2019058
[18] M, Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in R-N, Calc. Var. Partial Differ. Equ., 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[19] D. Idczak, Sensitivity of a nonlinear ordinary BVP with fractional Dirichlet-Laplace operator, Available from: arXivpreprintarXiv, 2018, 1812.11515. · Zbl 1468.34028
[20] M, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J. Math. Anal. Appl., 477, 133-152 (2019) · Zbl 1428.35673 · doi:10.1016/j.jmaa.2019.04.020
[21] N, Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian, Nonlinear Anal. Real World Appl., 37, 56-70 (2017) · Zbl 1394.35563 · doi:10.1016/j.nonrwa.2017.02.004
[22] P, On the Evolutionary Fractional \(p\)-Laplacian, Appl. Math. Res. Exp., 2, 235-273 (2015) · Zbl 1332.35383
[23] R, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33, 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[24] A, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. Theory Methods Appl., 94, 156-170 (2014) · Zbl 1283.35156 · doi:10.1016/j.na.2013.08.011
[25] D, On nonlinear fractional Schrodinger equations with Hartree-type nonlinearity, Appl. Anal., 97, 255-278 (2018) · Zbl 1393.35224 · doi:10.1080/00036811.2016.1260708
[26] L, Existence of solutions to boundary value problem with \(p\)-Laplace operator for a coupled system of nonlinear fractional differential equations, J. Hubei Univ. Natural Sci., 35, 48-51 (2013)
[27] G, Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol. Nat., 16, 288-297 (2017) · Zbl 1232.83044
[28] T, Stability of solutions for a parabolic problem involving fractional \(p\)-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17, 162-186 (2020) · Zbl 1450.35145 · doi:10.1007/s00009-020-01584-6
[29] J, Multiple positive solutions for a Kirchhoff type equation involving two potentials, Math. Methods Appl., 43, 10346-10356 (2020) · Zbl 1455.35111 · doi:10.1002/mma.6702
[30] L, The Nehari manifold for fractional p Laplacian equation with logarithmic nonlinearity on whole space, Comput. Math. Appl., 78, 3931-3940 (2019) · Zbl 1443.35175 · doi:10.1016/j.camwa.2019.06.024
[31] A, Existence and stability of standing waves for nonlinear fractional Schrodinger equation with logarithmic nonlinearity, Nonlinear Anal., 155, 52-60 (2017) · Zbl 1368.35242 · doi:10.1016/j.na.2017.01.006
[32] X, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26, 479-494 (2013) · Zbl 1276.35080 · doi:10.1088/0951-7715/26/2/479
[33] E, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. sci. math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.