×

Analysis/application of stabilization by the over-integration technique in CBS-SEM for incompressible flow. (English) Zbl 1524.76233

Summary: When the characteristic-based split (CBS) scheme is combined with spectral element method (SEM), high-order nonlinear terms in CBS scheme produce non-negligible aliasing error, which causes severe stability problems. In this paper, a stabilized framework based on CBS-SEM for incompressible flow simulation is established with stabilization by over-integration. The introduced over-integration addresses the aliasing-driven instability by approximating nonlinear terms with higher-order interpolations. A numerical experiment is presented to assess the performance of the stabilized framework in terms of the stability range, solution quality, and computational efficiency. The main conclusions are as follows: (1) Over-integration effectively extends the range of stability for CBS-SEM, where the increase in low-order interpolations is more significant. (2) For extremely under-resolved problems, two types of instabilities, including instability caused by the limitation of CFL condition and instability triggered by aliasing error, are observed in the numerical experiment. The stabilized framework is verified to be effective in handling both types of instability. (3) The order of over-integration only slightly affects the stability, but it markedly improves the capture of complex flow structure for high-order interpolations. In addition, a numerical investigation on incompressible flow past an airfoil is performed to further demonstrate the effectiveness of the framework.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence

Software:

Nektar++
Full Text: DOI

References:

[1] Em Karniadakis, G.; Sherwin, S., Spectral/hp Finite Element Methods for CFD (1999), Oxford University Press: Oxford University Press Oxford, January 1999 · Zbl 0954.76001
[2] Wang, Y.; Qin, G., An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation, Comput. Fluids, 174, 122-134 (2018) · Zbl 1410.76319
[3] Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J. E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J., Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205-219 (2015) · Zbl 1380.65465
[4] Moxey, D.; Cantwell, C. D.; Bao, Y.; Cassinelli, A.; Castiglioni, G.; Chun, S.; Juda, E.; Kazemi, E.; Lackhove, K.; Marcon, J.; Mengaldo, G.; Serson, D.; Turner, M.; Xu, H.; Peiró, J.; Kirby, R. M.; Sherwin, S. J., Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods, Comput. Phys. Commun., 249, Article 107110 pp. (2020) · Zbl 07678500
[5] Yan, Z. G.; Pan, Y.; Castiglioni, G.; Hillewaert, K.; Peiró, J.; Moxey, D.; Sherwin, S. J., Nektar++: design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach, Comput. Math. Appl., 81, 351-372 (2021) · Zbl 1456.76087
[6] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Zienkiewicz, O. C., Finite element methods for second order differential equations with significant first derivatives, Int. J. Numer. Methods Eng., 10, 6, 1389-1396 (1976) · Zbl 0342.65065
[7] Kelly, D. W.; Nakazawa, S.; Zienkiewicz, O. C.; Heinrich, J. C., A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems, Int. J. Numer. Methods Eng., 15, 11, 1705-1711 (1980) · Zbl 0452.76068
[8] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[9] Black, K., A conservative spectral element method for the approximation of compressible fluid flow, Kybernetika, 35, 1, 133-146 (1999) · Zbl 1274.76271
[10] Nigro, A.; De Bartolo, C.; Crivellini, A.; Franciolini, M.; Colombo, A.; Bassi, F., A low-dissipation DG method for the under-resolved simulation of low Mach number turbulent flows, Comput. Math. Appl., 77, 6, 1739-1755 (2019) · Zbl 1442.65270
[11] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence, J. Comput. Phys., 330, 615-623 (2017) · Zbl 1378.76036
[12] Mengaldo, G.; Moura, R. C.; Giralda, B.; Peiró, J.; Sherwin, S. J., Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES R, Comput. Fluids, 169, 349-364 (2018) · Zbl 1410.76103
[13] Mengaldo, G.; De Grazia, D.; Moura, R. C.; Sherwin, S. J., Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness, J. Comput. Phys., 358, 1-20 (2018) · Zbl 1381.76129
[14] Fernandez, P.; Moura, R. C.; Mengaldo, G.; Peraire, J., Non-modal analysis of spectral element methods: towards accurate and robust large-eddy simulations, Comput. Methods Appl. Mech. Eng., 346, 43-62 (2019) · Zbl 1440.76057
[15] Mengaldo, G., Discontinuous spectral/hp element methods: development, analysis and applications to compressible flows (2015), Imperial College London, Ph.D. thesis
[16] Zienkiewicz, O.; Taylor, R.; Nithiarasu, P., The Finite Element Method for Fluid Dynamics (2014), Elsevier · Zbl 1278.76006
[17] Zienkiewicz, O. C.; Nithiarasu, P.; Codina, R.; Vázquez, M.; Ortiz, P., The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems, Int. J. Numer. Methods Fluids, 31, 1, 359-392 (1999) · Zbl 0985.76069
[18] Spiegel, S. C.; Huynh, H. T.; DeBonis, J. R., De-Aliasing Through Over-Integration Applied to the Flux Reconstruction and Discontinuous Galerkin Methods (2015)
[19] Karamanos, G. S.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50 (2000) · Zbl 0984.76036
[20] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a Smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods, Comput. Fluids, 200, Article 104440 pp. (2020) · Zbl 1519.76095
[21] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations (2008), Society for Industrial and Applied Mathematics · Zbl 1153.65112
[22] Mengaldo, G.; Moxey, D.; Turner, M.; Moura, R. C.; Jassim, A.; Taylor, M.; Peiro, J.; Sherwin, S. J., Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/hp element methods, SIAM Rev., 64, 4, 723-755 (2021)
[23] Sinhababu, A.; Ayyalasomayajula, S., An improved dealiasing scheme for the fourth-order Runge-Kutta method: formulation, accuracy and efficiency analysis, Int. J. Numer. Methods Fluids, 1-31 (July 2020)
[24] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E.; Kopriva, D. A., Insights on aliasing driven instabilities for advection equations with application to Gauss-Lobatto discontinuous Galerkin methods, J. Sci. Comput., 75, 3, 1262-1281 (2018) · Zbl 1422.65263
[25] Kirby, R. M.; Karniadakis, G. E., De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys., 191, 1, 249-264 (2003) · Zbl 1161.76534
[26] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3-4, 221-237 (2012)
[27] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P.; Sherwin, S., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81 (2015) · Zbl 1352.65396
[28] Kopriva, D. A., Stability of overintegration methods for nodal discontinuous Galerkin spectral element methods, J. Sci. Comput., 76, 1, 426-442 (2017) · Zbl 1404.65174
[29] Winters, A. R.; Moura, R. C.; Mengaldo, G.; Gassner, G. J.; Walch, S.; Peiro, J.; Sherwin, S. J., A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, J. Comput. Phys., 372, 1-21 (2018) · Zbl 1415.76461
[30] Zienkiewicz, O. C.; Morgan, K.; Sai, B. V.K. S.; Codina, R.; Vasquez, M., A general algorithm for compressible and incompressible flow—part II. Tests on the explicit form, Int. J. Numer. Methods Fluids, 20, 8-9, 887-913 (1995) · Zbl 0837.76044
[31] Pasquetti, R., Comparison of some isoparametric mappings for curved triangular spectral elements, J. Comput. Phys., 316, 573-577 (2016) · Zbl 1349.65654
[32] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81 (2015) · Zbl 1352.65396
[33] Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S., Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method, Comput. Fluids, 166, 200-208 (2018) · Zbl 1390.76708
[34] Liu, Y.; Li, K.; Zhang, J.; Wang, H.; Liu, L., Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation, Commun. Nonlinear Sci. Numer. Simul., 17, 8, 3427-3434 (2012)
[35] Kurtulus, D. F., On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at \(\operatorname{Re} = 1000\), Int. J. Micro Air Veh., 7, 3, 301-326 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.