×

Finite element simulation of quasi-static tensile fracture In nonlinear strain-limiting solids with the phase-field approach. (English) Zbl 1524.74402

Summary: We investigate a quasi-static tensile fracture in nonlinear strain-limiting solids by coupling with the phase-field approach. A classical model for the growth of fractures in an elastic material is formulated in the framework of linear elasticity for deformation systems. This linear elastic fracture mechanics (LEFM) model is derived based on the assumption of small strain. However, the boundary value problem formulated within the LEFM and under traction-free boundary conditions predicts large singular crack-tip strains. Fundamentally, this result is directly in contradiction with the underlying assumption of small strain. In this work, we study a theoretical framework of nonlinear strain-limiting models, which are algebraic nonlinear relations between stress and strain. These models are consistent with the basic assumption of small strain. The advantage of such framework over the LEFM is that the strain remains bounded even if the crack-tip stress tends to the infinity. Then, employing the phase-field approach, the distinct predictions for tensile crack growth can be governed by the model. Several numerical examples to evaluate the efficacy and the performance of the model and numerical algorithms structured on finite element method are presented. Detailed comparisons of the strain, fracture energy with corresponding discrete propagation speed between the nonlinear strain-limiting model and the LEFM for the quasi-static tensile fracture are discussed.

MSC:

74R10 Brittle fracture
74B20 Nonlinear elasticity
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35Q74 PDEs in connection with mechanics of deformable solids

Software:

IPACS
Full Text: DOI

References:

[1] Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 221, 163-198 (1921) · Zbl 1454.74137
[2] Broberg, K. B., Cracks and Fracture (1999), Academic Press
[3] Knowles, J.; Sternberg, E., Large deformations near a tip of an interface-crack between two neo-hookean sheets, J. Elasticity, 13, 3, 257-293 (1983) · Zbl 0546.73079
[4] Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
[5] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 4, 291-323 (1975) · Zbl 0326.73001
[6] Kim, C.; Schiavone, P.; Ru, C.-Q., The effects of surface elasticity on an elastic solid with mode-III crack: complete solution, J. Appl. Mech., 77, 2, Article 021011 pp. (2010)
[7] Antipov, Y.; Schiavone, P., Integro-differential equation for a finite crack in a strip with surface effects, Q. J. Mech. Appl. Math., 64, 1, 87-106 (2011) · Zbl 1258.74185
[8] Zemlyanova, A. Y., The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack, Quart. J. Mech. Appl. Math., 66, 2, 199-219 (2013) · Zbl 1291.74165
[9] Zemlyanova, A. Y.; Walton, J. R., Modeling of a curvilinear planar crack with a curvature-dependent surface tension, SIAM J. Appl. Math., 72, 5, 1474-1492 (2012) · Zbl 1264.74014
[10] Walton, J. R., Plane-strain fracture with curvature-dependent surface tension: mixed-mode loading, J. Elasticity, 114, 1, 127-142 (2014) · Zbl 1282.74082
[11] Sendova, T.; Walton, J. R., A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale, Math. Mech. Solids, 15, 3, 368-413 (2010) · Zbl 1197.74010
[12] Ferguson, L. A.; Muddamallappa, M.; Walton, J. R., Numerical simulation of mode-III fracture incorporating interfacial mechanics, Int. J. Fract., 192, 1, 47-56 (2015)
[13] Walton, J. R.; Muddamallappa, M., Plane strain fracture with surface mechanics: non-local boundary regularization, (International Congress of Theoretical and Applied Mechanics, Vol. XXIV (2016))
[14] Zhang, S.; Li, S.; Jia, M.; Hao, Y.; Yang, R., Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior, Scr. Mater., 60, 8, 733-736 (2009)
[15] Saito, T.; Furuta, T.; Hwang, J.-H.; Kuramoto, S.; Nishino, K.; Suzuki, N.; Chen, R.; Yamada, A.; Ito, K.; Seno, Y.; Nonaka, T.; Ikehata, H.; Nagasako, N.; Iwamoto, C.; Ikuhara, Y.; Sakuma, T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science, 300, 5618, 464-467 (2003)
[16] Hou, F.; Li, S.; Hao, Y.; Yang, R., Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scr. Mater., 63, 1, 54-57 (2010)
[17] Withey, E.; Jin, M.; Minor, A.; Kuramoto, S.; Chrzan, D.; Morris, J., The deformation of ‘Gum Metal’ in nanoindentation, Mater. Sci. Eng. A, 493, 1, 26-32 (2008)
[18] Devendiran, V.; Sandeep, R.; Kannan, K.; Rajagopal, K., A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem, Int. J. Solids Struct., 108, 1-10 (2017)
[19] Kulvait, V.; Málek, J.; Rajagopal, K., Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies., Arch. Mech., 69, 3 (2017)
[20] Rajagopal, K. R., On implicit constitutive theories, Appl. Math., 48, 4, 279-319 (2003) · Zbl 1099.74009
[21] Rajagopal, K., The elasticity of elasticity, Z. Angew. Math. Phys., 58, 2, 309-317 (2007) · Zbl 1113.74006
[22] Rajagopal, K.; Srinivasa, A., On the response of non-dissipative solids, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 463 (2007), The Royal Society), 357-367 · Zbl 1129.74010
[23] Rajagopal, K., Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16, 1, 122-139 (2011) · Zbl 1269.74026
[24] Rajagopal, K., Conspectus of concepts of elasticity, Math. Mech. Solids, 16, 5, 536-562 (2011) · Zbl 1269.74014
[25] Rajagopal, K., On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225, 6, 1545-1553 (2014) · Zbl 1401.74045
[26] Bulíček, M.; Málek, J.; Rajagopal, K.; Süli, E., On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci., 1, 2, 293-342 (2014)
[27] Bulíček, M.; Málek, J.; Rajagopal, K. R.; Walton, J. R., Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies, Calc. Var. Partial Differential Equations, 54, 2, 2115-2147 (2015) · Zbl 1329.35302
[28] Bulíček, M.; Málek, J.; Süli, E., Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20, 1, 92-118 (2015) · Zbl 1327.74032
[29] Bonito, A.; Girault, V.; Suli, E., Finite element approximation of a strain-limiting elastic model (2018), arXiv preprint arXiv:1805.04006
[30] Gelmetti, N.; Suli, E., Spectral approximation of a strain-limiting nonlinear elastic model, Mat. Vesnik, 71, 1-2 (2018)
[31] Bustamante, R., Some topics on a new class of elastic bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 2105, 1377-1392 (2009) · Zbl 1186.74016
[32] Bustamante, R.; Rajagopal, K., A note on plane strain and plane stress problems for a new class of elastic bodies, Math. Mech. Solids, 15, 2, 229-238 (2010) · Zbl 1257.74022
[33] Bustamante, R.; Rajagopal, K., Solutions of some simple boundary value problems within the context of a new class of elastic materials, Int. J. Non-Linear Mech., 46, 2, 376-386 (2011)
[34] Bustamante, R.; Rajagopal, K., On a new class of electroelastic bodies. I, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469, 2149, Article 20120521 pp. (2013) · Zbl 1371.74095
[35] Bustamante, R.; Rajagopal, K., Implicit constitutive relations for nonlinear magnetoelastic bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 471, 2175, Article 20140959 pp. (2015) · Zbl 1371.74040
[36] Bustamante, R.; Rajagopal, K., Implicit equations for thermoelastic bodies, Int. J. Non-Linear Mech., 92, 144-152 (2017)
[37] Griffith, A., The phenomena of rupture and flow in solids., Philos. Trans. R. Soc. Lond., 221, 163-198 (1921) · Zbl 1454.74137
[38] Barenblatt, G., (The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Advances in Applied Mechanics, Vol. 7 (1962), Elsevier), 55-129
[39] Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, Article 014301 pp. (2014)
[40] Miehe, C.; Schaenzel, L.-M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[41] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput. Methods Appl. Mech. Engrg., 351, 860-890 (2019) · Zbl 1441.74213
[42] Lee, S.; Reber, J. E.; Hayman, N. W.; Wheeler, M. F., Investigation of wing crack formation with a combined phase-field and experimental approach, Geophys. Res. Lett., 43, 15, 7946-7952 (2016)
[43] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287
[44] T. Wick, S. Lee, M.F. Wheeler, 3D phase-field for pressurized fracture propagation in heterogeneous media, in: VI International Conference on Computational Methods for Coupled Problems in Science and Engineering 2015 Proceedings, 2015.
[45] Mikelić, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028
[46] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[47] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[48] Heider, Y.; Markert, B., A phase-field modeling approach of hydraulic fracture in saturated porous media, Mech. Res. Commun., 80, 38-46 (2017), Multi-Physics of Solids at Fracture
[49] Lee, S.; Mikelić, A.; Wheeler, M.; Wick, T., Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., 16, 4, 1542-1580 (2018) · Zbl 1401.74084
[50] Lee, S.; Wheeler, M. F.; Wick, T., Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, J. Comput. Appl. Math., 314, 40-60 (2017) · Zbl 1388.76140
[51] Lee, S.; Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Engrg., 312, 509-541 (2016), Phase Field Approaches to Fracture · Zbl 1439.74359
[52] Cajuhi, T.; Sanavia, L.; De Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput. Mech. (2017) · Zbl 1458.74125
[53] Lee, S.; Wheeler, M. F.; Wick, T.; Srinivasan, S., Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks, Mech. Res. Commun., 80, 16-23 (2017), Multi-Physics of Solids at Fracture
[54] Wheeler, M. F.; Srinivasan, S.; Lee, S.; Singh, M., Unconventional reservoir management modeling coupling diffusive zone/phase field fracture modeling and fracture probability maps, (SPE Reservoir Simulation Conference (2019), Society of Petroleum Engineers)
[55] Choo, J.; Sun, W., Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling, Comput. Methods Appl. Mech. Engrg., 335, 347-379 (2018) · Zbl 1440.74358
[56] Chukwudozie, C.; Bourdin, B.; Yoshioka, K., A variational phase-field model for hydraulic fracturing in porous media, Comput. Methods Appl. Mech. Engrg., 347, 957-982 (2019) · Zbl 1440.74121
[57] Yoshioka, K.; Parisio, F.; Naumov, D.; Lu, R.; Kolditz, O.; Nagel, T., Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing, GEM - Int. J. Geomath., 10, 1, 13 (2019) · Zbl 1453.86010
[58] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[59] Shovkun, I.; Espinoza, D. N., Propagation of toughness-dominated fluid-driven fractures in reactive porous media, Int. J. Rock Mech. Min. Sci., 118, 42-51 (2019)
[60] Lee, S.; Min, B.; Wheeler, M. F., Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm, Comput. Geosci., 22, 3, 833-849 (2018) · Zbl 1405.76055
[61] Mandal, T. K.; Nguyen, V. P.; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study, Eng. Fract. Mech., 207, 48-67 (2019)
[62] Shiozawa, S.; Lee, S.; Wheeler, M. F., The effect of stress boundary conditions on fluid-driven fracture propagation in porous media using a phase-field modeling approach, Int. J. Numer. Anal. Methods Geomech., 43, 6, 1316-1340 (2019)
[63] Brun, M. K.; Wick, T.; Berre, I.; Nordbotten, J. M.; Radu, F. A., An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, Comput. Methods Appl. Mech. Engrg., 361, Article 112752 pp. (2020) · Zbl 1442.74208
[64] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[65] Rajagopal, K.; Srinivasa, A., On a class of non-dissipative materials that are not hyperelastic, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 465 (2009), The Royal Society), 493-500 · Zbl 1186.74009
[66] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (The Non-Linear Field Theories of Mechanics (2004), Springer: Springer Berlin, Heidelberg), 1-579 · Zbl 1068.74002
[67] Truesdell, C., Hypo-elasticity, J. Ration. Mech. Anal., 4, 83-1020 (1955) · Zbl 0064.42002
[68] Carroll, M., Must elastic materials be hyperelastic?, Math. Mech. Solids, 14, 4, 369-376 (2009) · Zbl 1257.74017
[69] Spencer, A., Part III. Theory of invariants, Contin. Phys., 1, 239-353 (2017)
[70] Rajagopal, K.; Walton, J., Modeling fracture in the context of a strain-limiting theory of elasticity: A single anti-plane shear crack, Int. J. Fract., 169, 1, 39-48 (2011) · Zbl 1283.74074
[71] Gou, K.; Mallikarjuna, M.; Rajagopal, K.; Walton, J., Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack, Internat. J. Engrg. Sci., 88, 73-82 (2015) · Zbl 1423.74824
[72] Mallikarjunaiah, S. M.; Walton, J. R., On the direct numerical simulation of plane-strain fracture in a class of strain-limiting anisotropic elastic bodies, Int. J. Fract., 192, 2, 217-232 (2015)
[73] Mai, T.; Walton, J. R., On monotonicity for strain-limiting theories of elasticity, J. Elasticity, 120, 1, 39-65 (2015) · Zbl 1315.74007
[74] Mai, T.; Walton, J. R., On strong ellipticity for implicit and strain-limiting theories of elasticity, Math. Mech. Solids, 20, 2, 121-139 (2015) · Zbl 07278982
[75] Mai, T.; Walton, J. R., On strong ellipticity for implicit and strain-limiting theories of elasticity, Math. Mech. Solids, 20, 2, 121-139 (2015) · Zbl 07278982
[76] Fu, S.; Chung, E.; Mai, T., Generalized multiscale finite element method for a strain-limiting nonlinear elasticity model, J. Comput. Appl. Math., 359, 153-165 (2019) · Zbl 1416.74084
[77] Fu, S.; Chung, E.; Mai, T., Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity (2019), arXiv preprint arXiv:1909.13267
[78] Muddamallappa, M. S., On Two Theories for Brittle Fracture: Modeling and Direct Numerical Simulations (2015), Texas A&M University, (Ph.D. thesis)
[79] Yoon, H. C.; Lee, S.; Mallikarjunaiah, S., Quasi-static anti-plane shear crack propagation in nonlinear strain-limiting elastic solids using phase-field approach, Int. J. Fract., 227, 153-172 (2021)
[80] Ortiz, A.; Bustamante, R.; Rajagopal, K., A numerical study of a plate with a hole for a new class of elastic bodies, Acta Mech., 223, 9, 1971-1981 (2012) · Zbl 1356.74122
[81] Kulvait, V.; Málek, J.; Rajagopal, K., Anti-plane stress state of a plate with a V-notch for a new class of elastic solids, Int. J. Fract., 179, 1-2, 59-73 (2013)
[82] Kulvait, V.; Málek, J.; Rajagopal, K., The state of stress and strain adjacent to notches in a new class of nonlinear elastic bodies, J. Elasticity, 135, 1-2, 375-397 (2019) · Zbl 1415.74011
[83] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[84] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[85] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence, Comm. Pure Appl. Math., 43, 999-1036 (1990) · Zbl 0722.49020
[86] Ambrosio, L.; Tortorelli, V., On the approximation of free discontinuity problems, Boll. Unione Mat. Ital. B, 6, 105-123 (1992) · Zbl 0776.49029
[87] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273-1311 (2010) · Zbl 1202.74014
[88] Francfort, G. A.; Larsen, C. J., Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math., 56, 10, 1465-1500 (2003) · Zbl 1068.74056
[89] Giacomini, A., Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Differential Equations, 22, 2, 129-172 (2005) · Zbl 1068.35189
[90] Wheeler, M. F.; Wick, T.; Wollner, W., An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[91] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Vol. 15 (2000), Elsevier
[92] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, Vol. 9 (1989), SIAM · Zbl 0698.73001
[93] Neitzel, I.; Wick, T.; Wollner, W., An optimal control problem governed by a regularized phase-field fracture propagation model, SIAM J. Control Optim., 55, 4, 2271-2288 (2017) · Zbl 1370.49003
[94] Mikelić, A.; Wheeler, M.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM-Int. J. Geomath., 10, 1, 2 (2019) · Zbl 1419.74216
[95] Wheeler, M. F.; Wick, T.; Lee, S., IPACS: Integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comput. Methods Appl. Mech. Engrg., 367, Article 113124 pp. (2020) · Zbl 1442.74216
[96] Arndt, D.; Bangerth, W.; Clevenger, T. C.; Davydov, D.; Fehling, M.; Garcia-Sanchez, D.; Harper, G.; Heister, T.; Heltai, L.; Kronbichler, M.; Kynch, R. M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II library, version 9.1, J. Numer. Math. (2019), accepted · Zbl 1435.65010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.