×

Cracking and damage from crystallization in pores: coupled chemo-hydro-mechanics and phase-field modeling. (English) Zbl 1440.74358

Summary: Cracking and damage from crystallization of minerals in pores center on a wide range of problems, from weathering and deterioration of structures to storage of \(\mathrm{CO_2}\) via in situ carbonation. Here we develop a theoretical and computational framework for modeling these crystallization-induced deformation and fracture in fluid-infiltrated porous materials. Conservation laws are formulated for coupled chemo-hydro-mechanical processes in a multiphase material composed of the solid matrix, liquid solution, gas, and crystals. We then derive an expression for the effective stress tensor that is energy-conjugate to the strain rate of a porous material containing crystals growing in pores. This form of effective stress incorporates the excess pore pressure exerted by crystal growth – the crystallization pressure – which has been recognized as the direct cause of deformation and fracture during crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitutive framework for porous media subject to crystal growth. The chemo-hydro-mechanical model is then coupled with a phase-field approach to fracture which enables simulation of complex fractures without explicitly tracking their geometry. For robust and efficient solution of the initial-boundary value problem at hand, we utilize a combination of finite element and finite volume methods and devise a block-partitioned preconditioning strategy. Through numerical examples we demonstrate the capability of the proposed modeling framework for simulating complex interactions among unsaturated flow, crystallization kinetics, and cracking in the solid matrix.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74N05 Crystals in solids

Software:

deal.ii; Trilinos; p4est

References:

[1] Conservation of Historic Stone Buildings and Monuments (1982), The National Academies Press: The National Academies Press Washington, D.C.
[2] Tsui, N.; Flatt, R. J.; Scherer, G. W., Crystallization damage by sodium sulfate, J. Cultural Heritage, 4, 2, 109-115 (2003)
[3] Angeli, M.; Bigas, J. P.; Benavente, D.; Menéndez, B.; Hébert, R.; David, C., Salt crystallization in pores: Quantification and estimation of damage, Environ. Geol., 52, 2, 187-195 (2007)
[4] Espinosa-Marzal, R. M.; Scherer, G. W., Mechanisms of damage by salt, Geologic. Soc. Lond. Spec. Publ., 331, 1, 61-77 (2010)
[5] Steiger, M.; Charola, A. E.; Sterflinger, K., Weathering and deterioration, (Stone in Architecture (2014), Springer), 225-316
[6] Flatt, R. J.; Caruso, F.; Sanchez, A. M.A.; Scherer, G. W., Chemo-mechanics of salt damage in stone, Nat. Commun., 5, 4823 (2014)
[7] Sass, I.; Burbaum, U., Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations, Acta Carsologica, 39, 2, 233-245 (2010)
[8] Serafeimidis, K.; Anagnostou, G., On the time-development of sulphate hydration in anhydritic swelling rocks, Rock Mech. Rock Eng., 46, 3, 619-634 (2013)
[9] Alonso, E. E.; Ramon, A., Massive sulfate attack to cement-treated railway embankments, Géotechnique, 63, 10, 857-870 (2013)
[10] Kelemen, P. B.; Matter, J., In situ carbonation of peridotite for CO \({}_2\) storage, Proc. Natl. Acad. Sci. USA, 105, 45, 17295-17300 (2008)
[11] Scherer, G. W., Crystallization in pores, Cement Concrete Res., 29, 8, 1347-1358 (1999)
[12] Scherer, G. W., Stress from crystallization of salt, Cement Concrete Res., 34, 9, 1613-1624 (2004)
[13] Correns, C. W.; Steinborn, W., Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft, Z. Kristallogr., 101, 117-133 (1939)
[14] Correns, C. W., Growth and dissolution of crystals under linear pressure, Discuss. Faraday Soc., 5, 267-271 (1949)
[15] Steiger, M., Crystal growth in porous materials—I: The crystallization pressure of large crystals, J. Cryst. Growth, 282, 3-4, 455-469 (2005)
[16] Steiger, M., Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure, J. Cryst. Growth, 282, 3-4, 470-481 (2005)
[17] Flatt, R. J.; Scherer, G. W., Thermodynamics of crystallization stresses in DEF, Cement Concrete Res., 38, 3, 325-336 (2008)
[18] Kelemen, P. B.; Hirth, G., Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth Planet. Sci. Lett., 345-348, 81-89 (2012)
[19] Desarnaud, J.; Bonn, D.; Shahidzadeh, N., The pressure induced by salt crystallization in confinement, Sci. Rep., 6, 1, 30856 (2016)
[20] Coussy, O., Deformation and stress from in-pore drying-induced crystallization of salt, J. Mech. Phys. Solids, 54, 8, 1517-1547 (2006) · Zbl 1120.74448
[21] Koniorczyk, M.; Gawin, D., Modelling of salt crystallization in building materials with microstructure - Poromechanical approach, Constr. Build. Mater., 36, 860-873 (2012)
[22] Derluyn, H.; Moonen, P.; Carmeliet, J., Deformation and damage due to drying-induced salt crystallization in porous limestone, J. Mech. Phys. Solids, 63, 1, 242-255 (2014)
[23] Borja, R. I., Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. Methods Appl. Mech. Engrg., 193, 48-51, 5301-5338 (2004) · Zbl 1112.74430
[24] Borja, R. I., On the mechanical energy and effective stress in saturated and unsaturated porous continua, Int. J. Solids Struct., 43, 6, 1764-1786 (2006) · Zbl 1120.74446
[25] Borja, R. I.; Koliji, A., On the effective stress in unsaturated porous continua with double porosity, J. Mech. Phys. Solids, 57, 8, 1182-1193 (2009) · Zbl 1425.74310
[26] Song, X.; Borja, R. I., Mathematical framework for unsaturated flow in the finite deformation range, Internat. J. Numer. Methods Engrg., 97, 658-682 (2014) · Zbl 1352.76115
[27] Choo, J.; White, J. A.; Borja, R. I., Hydromechanical modeling of unsaturated flow in double porosity media, Int. J. Geomech., 16, 6, D4016002 (2016)
[28] Choo, J., Hydromechanical modeling framework for multiscale porous materials (2016), Stanford University
[29] Borja, R. I.; Choo, J., Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure, Comput. Methods Appl. Mech. Engrg., 309, 653-679 (2016) · Zbl 1439.74059
[30] Borja, R. I.; White, J. A., Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration, Acta Geotech., 5, 1, 1-14 (2010)
[31] Borja, R. I.; Choo, J.; White, J. A., Rock moisture dynamics, preferential flow, and the stability of hillside slopes, (Gardoni, P.; LaFave, J. M., Multi-hazard Approaches to Civil Infrastructure Engineering (2016), Springer), 443-464
[32] Bourdin, B.; Francfort, G. A.; Marigo, J. J., The variational approach to fracture, J. Elasticity, 91, 5-148 (2008) · Zbl 1176.74018
[33] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[34] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 82, 1273-1311 (2010) · Zbl 1202.74014
[35] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[36] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[37] Wilson, Z. A.; Borden, M. J.; Landis, C. M., A phase-field model for fracture in piezoelectric ceramics, Int. J. Fract., 183, 2, 135-153 (2013)
[38] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[39] Mikelić, A.; Wheeler, M.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, Multiscale Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028
[40] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2015) · Zbl 1425.74423
[41] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[42] Wilson, Z. A.; Landis, C. M., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020
[43] Lee, S.; Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Engrg., 312, 509-541 (2016) · Zbl 1439.74359
[44] Lee, S.; Reber, J. E.; Hayman, N. W.; Wheeler, M. F., Investigation of wing crack formation with a combined phase-field and experimental approach, Geophys. Res. Lett., 43, 15, 7946-7952 (2016)
[45] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[46] De Lorenzis, L.; McBride, A.; Reddy, B., Phase-field modelling of fracture in single crystal plasticity, GAMM-Mitt., 39, 1, 7-34 (2016) · Zbl 1397.74031
[47] Zhang, X.; Krischok, A.; Linder, C., A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes, Comput. Methods Appl. Mech. Engrg., 312, 51-77 (2016) · Zbl 1439.74250
[48] Lee, S.; Wheeler, M. F.; Wick, T., Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, J. Comput. Appl. Math., 314, 40-60 (2017) · Zbl 1388.76140
[49] Mauthe, S.; Miehe, C., Hydraulic fracture in poro-hydro-elastic media, Mech. Res. Commun., 80, 69-83 (2017)
[50] Ehlers, W.; Luo, C., A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing, Comput. Methods Appl. Mech. Engrg., 315, 348-368 (2017) · Zbl 1439.74107
[51] Santillán, D.; Juanes, R.; Cueto-Felgueroso, L., Phase-field model of fluid-driven fracture in elastic media: immersed-fracture formulation and validation with analytical solutions, J. Geophys. Res.: Solid Earth, 1-25 (2017)
[52] Na, S.; Sun, W. C.; Yoon, H.; Ingraham, M., Effects of elastic heterogeneity on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests, J. Geophys. Res.: Solid Earth, 122, 8, 6202-6230 (2017)
[53] Cajuhi, T.; Sanavia, L.; De Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput. Mech. (2017) · Zbl 1458.74125
[54] Choo, J.; Sun, W., Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow, Comput. Methods Appl. Mech. Engrg., 330, 1-32 (2018) · Zbl 1439.74184
[55] de Borst, R.; Verhoosel, C. V., Gradient damage vs phase-field approaches for fracture: Similarities and differences, Comput. Methods Appl. Mech. Engrg., 312, 78-94 (2016) · Zbl 1439.74347
[56] Castellazzi, G.; Colla, C.; De Miranda, S.; Formica, G.; Gabrielli, E.; Molari, L.; Ubertini, F., A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization, Constr. Build. Mater., 41, 717-731 (2013)
[57] Na, S.; Sun, W., Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range, Comput. Methods Appl. Mech. Engrg., 318, 667-700 (2017) · Zbl 1439.74114
[58] Terzaghi, K., Theoretical Soil Mechanics (1943), John Wiley & Sons
[59] Choo, J.; Jung, Y.-H.; Chung, C.-K., Effect of directional stress history on anisotropy of initial stiffness of cohesive soils measured by bender element tests, Soils Found., 51, 4, 737-747 (2011)
[60] Jung, Y.-H.; Choo, J.; Cho, W.; Chung, C.-K., Patterns of nonlinear shear stiffness degradation of reconstituted clay with different stress histories, Marine Geores. Geotechnol., 31, 4, 309-331 (2013)
[61] Choo, J.; Jung, Y.-H.; Cho, W.; Chung, C.-K., Effect of pre-shear stress path on nonlinear shear stiffness degradation of cohesive soils, Geotech. Test. J., 36, 2, 198-205 (2013)
[62] Flatt, R. J.; Steiger, M.; Scherer, G. W., A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure, Environ. Geol., 52, 187-203 (2007)
[63] van Genuchten, M. Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Am. J., 44, 5, 892-898 (1980)
[64] Espinosa-Marzal, R. M.; Scherer, G. W., Impact of in-pore salt crystallization on transport properties, Environ. Earth Sci., 69, 8, 2657-2669 (2013)
[65] Espinosa-Marzal, R. M.; Franke, L.; Deckelmann, G., Phase changes of salts in porous materials: Crystallization, hydration and deliquescence, Constr. Build. Mater., 22, 1758-1773 (2007)
[66] Gurtin, M. E., Generalized Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178-192 (1996) · Zbl 0885.35121
[67] Gurtin, M. E., On the plasticity of single crystals: Free energy, microforces, plastic strain gradients, J. Mech. Phys. Solids, 48, 989-1036 (2000) · Zbl 0988.74021
[68] Henann, D. L.; Kamrin, K., Continuum thermomechanics of the nonlocal granular rheology, Int. J. Plast., 60, 145-162 (2014)
[69] Griffith, A., The phenomena of rupture and flow in solids, Phil. Trans. Ser. A, 221, 163-198 (1921) · Zbl 1454.74137
[70] Wang, K.; Sun, W., A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1-32 (2017) · Zbl 1439.74373
[71] Zhang, X.; Vignes, C.; Sloan, S. W.; Sheng, D., Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale, Comput. Mech., 59, 5, 737-752 (2017)
[72] Harison, J. A.; Hardin, B. O.; Mahboub, K., Fracture toughness of compacted cohesive soils using ring test, J. Geotech. Eng., 120, 5, 872-891 (1994)
[73] Zhang, Z. X., An empirical relation between mode-I fracture toughness and the tensile strength of rock, Int. J. Rock Mech. Mining Sci., 39, 401-406 (2002)
[74] Wang, J.; Zhu, J.; Chiu, C.; Zhang, H., Experimental study on fracture toughness and tensile strength of a clay, Eng. Geol., 94, 1-2, 65-75 (2007)
[75] Lakshmikantha, M.; Prat, P.; Ledesma, A., Discussion on “Experimental study on fracture toughness and tensile strength of a clay [Engineering Geology 94 (2007) 64-75], Eng. Geol., 101, 295-296 (2008)
[76] Borja, R. I.; White, J. A., Conservation laws for coupled hydromechanical processes in unsaturated porous media: Theory and implementation, (Laloui, L., Mechanics of Unsaturated Geomaterials (2010), John Wiley & Sons), 185-208
[77] Aziz, K.; Durlofsky, L.; Tchelepi, H. A., Notes on Reservoir Simulation (2014), Stanford Unviersity Lecture Notes
[78] Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50 (2014)
[79] Kim, J.; Sonnenthal, E.; Rutqvist, J., A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs, Comput. Geosci., 76, 59-71 (2015)
[80] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[81] White, J. A.; Borja, R. I., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) · Zbl 1367.76034
[82] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[83] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16, 2, 249-262 (2011) · Zbl 1228.74106
[84] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 1591-1606 (2011) · Zbl 1228.74101
[85] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 455-461 (2013) · Zbl 1392.35235
[86] Noiriel, C.; Renard, F.; Doan, M. L.; Gratier, J. P., Intense fracturing and fracture sealing induced by mineral growth in porous rocks, Chem. Geol., 269, 3-4, 197-209 (2010)
[87] Dai, S.; Shin, H.; Santamarina, J. C., Formation and development of salt crusts on soil surfaces, Acta Geotech., 11, 5, 1103-1109 (2016)
[88] W. Bangerth, R. Hartmann, G. Kanschat, (2007) deal . II—A general-purpose object-oriented finite element library, 33 (4) 1-27.; W. Bangerth, R. Hartmann, G. Kanschat, (2007) deal . II—A general-purpose object-oriented finite element library, 33 (4) 1-27. · Zbl 1365.65248
[89] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 8.5, J. Numer. Math., 25, 3, 137-146 (2017) · Zbl 1375.65148
[90] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[91] Heroux, M. A.; Willenbring, J. M., A new overview of the Trilinos project, Sci. Program., 20, 2, 83-88 (2012)
[92] Liakopoulos, A. C., Transient Flow Through Unsaturated Porous Media (1964), University of California, Berkeley
[93] Schrefler, B. A.; Xiaoyong, Z., A fully coupled model for water flow and airflow in deformable porous media, Water Resour. Res., 29, 1, 155-167 (1993)
[94] G. Klubertanz, L. Laloui, L. Vulliet, (1997) Numerical modeling of unsaturated porous media as a two and three phase medium: A comparison, in: Proc. 9th Int. Conf. On Comp. Meth. and Advances in Geomech., IACMAG Vol. 2, pp. 1159-1164.; G. Klubertanz, L. Laloui, L. Vulliet, (1997) Numerical modeling of unsaturated porous media as a two and three phase medium: A comparison, in: Proc. 9th Int. Conf. On Comp. Meth. and Advances in Geomech., IACMAG Vol. 2, pp. 1159-1164.
[95] Schrefler, B. A.; Scotta, R., A fully coupled dynamic model for two-phase fluid flow in deformable porous media, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3223-3246 (2001) · Zbl 0977.74019
[96] Ehlers, W.; Graf, T.; Ammann, M., Deformation and localization analysis of partially saturated soil, Comput. Methods Appl. Mech. Engrg., 193, 27-29, 2885-2910 (2004) · Zbl 1067.74543
[97] Liu, E.; Yu, H. S.; Deng, G.; Zhang, J.; He, S., Numerical analysis of seepage – deformation in unsaturated soils, Acta Geotech., 9, 6, 1045-1058 (2014)
[98] Rasmussen, T. C.; Evans, D. D.; Sheets, P. J.; Blandford, J. H., Permeability of Apace Leap Tuff: Borehole and core measurements using water and air, Water Resour. Res., 29, 7, 1997-2006 (1993)
[99] White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4353-4366 (2008) · Zbl 1194.74480
[100] Sun, W.; Ostien, J. T.; Salinger, A. G., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 16, 2755-2788 (2013)
[101] Choo, J.; Borja, R. I., Stabilized mixed finite elements for deformable porous media with double porosity, Comput. Methods Appl. Mech. Engrg., 293, 131-154 (2015) · Zbl 1423.74265
[102] Sun, W., A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 11, 798-839 (2015) · Zbl 1352.76116
[103] Krischok, A.; Linder, C., On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids, Internat. J. Numer. Methods Engrg., 106, 4, 278-297 (2016) · Zbl 1352.74384
[104] B. Dortdivanlioglu, A. Krischok, L. Beirão da Veiga, C. Linder, Mixed isogeometric analysis of strongly coupled diffusion in porous materials, Internat. J. Numer. Methods Engrg., http://dx.doi.org/10.1002/nme.5731; B. Dortdivanlioglu, A. Krischok, L. Beirão da Veiga, C. Linder, Mixed isogeometric analysis of strongly coupled diffusion in porous materials, Internat. J. Numer. Methods Engrg., http://dx.doi.org/10.1002/nme.5731 · Zbl 07878320
[105] Lecampion, B., Stress-induced crystal preferred orientation in the poromechanics of in-pore crystallization, J. Mech. Phys. Solids, 58, 10, 1701-1715 (2010) · Zbl 1200.74023
[106] White, J.; Borja, R.; Fredrich, J., Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations, Acta Geotech., 1, 195-209 (2006)
[107] Sun, W.; Andrade, J. E.; Rudnicki, J. W., Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability, Internat. J. Numer. Methods Engrg., 88, 12, 1260-1279 (2011) · Zbl 1242.74165
[108] Choo, J.; Kim, Y. J.; Lee, J.; Yun, T. S.; Lee, J.; Kim, Y. S., Stress-induced evolution of anisotropic thermal conductivity of dry granular materials, Acta Geotech., 8, 1, 91-106 (2013)
[109] Kang, D. H.; Choo, J.; Yun, T. S., Evolution of pore characteristics in the 3D numerical direct shear test, Comput. Geotech., 49, 53-61 (2013)
[110] Sun, W.; Kuhn, M. R.; Rudnicki, J. W., A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band, Acta Geotech., 1-16 (2013)
[111] Sun, W.; Cai, Z.; Choo, J., Mixed Arlequin method for multiscale poromechanics problems, Internat. J. Numer. Methods Engrg., 111, 7, 624-659 (2017) · Zbl 07867116
[112] Scherer, G. W., Theory of drying, J. Amer. Ceramic Soc., 73, 1, 3-14 (1990)
[113] Kowalski, S. J.; Rybicki, A., Drying stress formation induced by inhomogeneous moisture and temperature distribution, Transp. Porous Media, 24, 239-248 (1996)
[114] Kowalski, S. J., Thermomechanics of Drying Processes (2003), Springer · Zbl 1038.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.