×

New finite difference mapped WENO schemes with increasingly high order of accuracy. (English) Zbl 1524.65448

Summary: In this paper, a new type of finite difference mapped weighted essentially non-oscillatory (MWENO) schemes with unequal-sized stencils, such as the seventh-order and ninth-order versions, is constructed for solving hyperbolic conservation laws. For the purpose of designing increasingly high-order finite difference WENO schemes, the equal-sized stencils are becoming more and more wider. The more we use wider candidate stencils, the bigger the probability of discontinuities lies in all stencils. Therefore, one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some four-point or five-point stencils into several smaller three-point stencils. By the usage of this new methodology in high-order spatial reconstruction procedure, we get different degree polynomials defined on these unequal-sized stencils, and calculate the linear weights, smoothness indicators, and nonlinear weights as specified in [G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, No. 1, 202–228 (1996; Zbl 0877.65065)]. Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions, another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights, so as to keep the optimal order of accuracy in smooth regions. These new MWENO schemes can also be applied to compute some extreme examples, such as the double rarefaction wave problem, the Sedov blast wave problem, and the Leblanc problem with a normal CFL number. Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65N06 Finite difference methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0877.65065
Full Text: DOI

References:

[1] Balsara, DS; Garain, S.; Shu, C-W, An efficient class of WENO schemes with adaptive order, J. Comput. Phys., 326, 780-804 (2016) · Zbl 1422.65146
[2] Balsara, DS; Rumpf, T.; Dumbser, M.; Munz, CD, Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480-2516 (2009) · Zbl 1275.76169
[3] Balsara, DS; Shu, C-W, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[4] Borges, R.; Carmona, M.; Costa, B.; Don, WS, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211 (2008) · Zbl 1136.65076
[5] Bryson, S.; Levy, D., Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations, Appl. Numer. Math., 56, 1211-1224 (2006) · Zbl 1096.65081
[6] Capdeville, G., A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes, J. Comput. Phys., 227, 2977-3014 (2008) · Zbl 1135.65359
[7] Casper, J., Finite-volume implementation of high order essentially nonoscillatory schemes in two dimensions, AIAA J., 30, 2829-2835 (1992) · Zbl 0769.76043
[8] Casper, J.; Atkins, HL, A finite-volume high order ENO scheme for two-dimensional hyperbolic systems, J. Comput. Phys., 106, 62-76 (1993) · Zbl 0774.65066
[9] Castro, M.; Costa, B.; Don, WS, High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230, 1766-1792 (2011) · Zbl 1211.65108
[10] Colella, P.; Woodward, P., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082
[11] Cravero, I.; Semplice, M., On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes, J. Sci. Comput., 67, 1219-1246 (2016) · Zbl 1343.65116
[12] Feng, H.; Hu, FX; Wang, R., A new mapped weighted essentially non-oscillatory scheme, J. Sci. Comput., 51, 449-473 (2012) · Zbl 1253.65124
[13] Fu, L.; Hu, XYY; Adams, NA, A family of high order targeted ENO schemes for compressible-fluid simulations, J. Comput. Phys., 305, 333-359 (2016) · Zbl 1349.76462
[14] Gao, Z.; Don, WS, Mapped hybrid central-WENO finite difference scheme for detonation waves simulations, J. Sci. Comput., 55, 351-371 (2013) · Zbl 1271.65121
[15] Godunov, SK, A finite-difference scheme for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Matthematicheskii Sbornik, 47, 3, 271-290 (1959) · Zbl 0171.46204
[16] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 3, 357-393 (1983) · Zbl 0565.65050
[17] Harten, A.; Carasso, C., Preliminary results on the extension of ENO schemes to two-dimensional problems, Proceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986 (1987), Berlin: Springer-Verlag, Berlin · Zbl 0626.65082
[18] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys., 71, 231-323 (1987) · Zbl 0652.65067
[19] Harten, A.; Osher, S., Uniformly high order accurate non-oscillatory schemes, IMRC Technical Summary Rept. 2823 (1985), Madison: Univ. of Wisconsin, Madison
[20] Henrick, AK; Aslam, TD; Powers, JM, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[21] Hong, Z.; Ye, Z.; Meng, X., A mapping-function-free WENO-M scheme with low computational cost, J. Comput. Phys., 405, 109145 (2020) · Zbl 1453.65219
[22] Hu, G.; Li, R.; Tang, T., A robust WENO type finite volume solver for steady Euler equations on unstructured grids, Commun. Comput. Phys., 9, 627-648 (2011) · Zbl 1364.65226
[23] Hu, C.; Shu, C-W, Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127 (1999) · Zbl 0926.65090
[24] Jiang, G-S; Shu, C-W, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[25] Kolb, O., On the full and global accuracy of a compact third order WENO scheme, SIAM J. Numer. Anal., 52, 5, 2335-2355 (2014) · Zbl 1408.65062
[26] Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991)
[27] Lax, PD, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[28] Leonard, BP, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Meth. Appl. Mech. Eng., 88, 17-74 (1991) · Zbl 0746.76067
[29] Leonard, BP; Lock, AP; MacVean, MK, The NIRVANA scheme applied to one-dimensional advection, Int. J. Num. Meth. Heat Fluid Flow, 5, 341-377 (1995) · Zbl 0849.76063
[30] Levy, D.; Puppo, G.; Russo, G., Central WENO schemes for hyperbolic systems of conservation laws, ESAIM: M2AN, 33, 547-571 (1999) · Zbl 0938.65110
[31] Levy, D.; Puppo, G.; Russo, G., Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22, 2, 656-672 (2000) · Zbl 0967.65089
[32] Linde, T., Roe, P.L.: Robust Euler codes. In: 13th Computational Fluid Dynamics Conference, AIAA-97-2098, AIAA Inc., Reno, Nevada (1997)
[33] Liu, XD; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[34] Liu, Y.; Zhang, YT, A robust reconstruction for unstructured WENO schemes, J. Sci. Comput., 54, 603-621 (2013) · Zbl 1263.65087
[35] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029
[36] Qiu, J.; Shu, C-W, On the construction, comparison, and local characteristic decomposition for high order central WENO schemes, J. Comput. Phys., 183, 187-209 (2002) · Zbl 1018.65106
[37] Sedov, LI, Similarity and Dimensional Methods in Mechanics (1959), New York: Academic Press, New York · Zbl 0121.18504
[38] Semplice, M.; Coco, A.; Russo, G., Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction, J. Sci. Comput., 66, 692-724 (2016) · Zbl 1335.65077
[39] Serna, S.; Marquina, A., Power-ENO methods: a fifth-order accurate weighted power ENO method, J. Comput. Phys., 194, 632-658 (2004) · Zbl 1044.65071
[40] Serna, S.; Qian, J., Fifth order weighted power-ENO methods for Hamilton-Jacobi equations, J. Sci. Comput., 29, 57-81 (2006) · Zbl 1149.70301
[41] Shen, YQ; Yang, GW, Hybrid finite compact-WENO schemes for shock calculation, Int. J. Numer. Meth. Fluids, 53, 531-560 (2007) · Zbl 1104.76065
[42] Shen, Y.Q., Zha, G.C.: A robust seventh-order WENO scheme and its applications. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-757, AIAA, Inc., Reno, Nevada (2008)
[43] Shi, J.; Hu, CQ; Shu, C-W, A technique of treating negative weights in WENO schemes, J. Comput. Phys., 175, 108-127 (2002) · Zbl 0992.65094
[44] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325-432. Springer-Verlag, Berlin, Heidelberg (1998) · Zbl 0927.65111
[45] Shu, C-W; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[46] Shu, C-W; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[47] Suresh, A.; Huynh, HT, Accurate monotonicity preserving scheme with Runge-Kutta time stepping, J. Comput. Phys., 136, 83-99 (1997) · Zbl 0886.65099
[48] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[49] Wang, ZJ; Chen, RF, Optimized weighted essentially non-oscillatory schemes for linear waves with discontinuity, J. Comput. Phys., 174, 381-404 (2001) · Zbl 1106.76412
[50] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
[51] Zhang, YT; Shu, C-W, High order WENO schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput., 24, 1005-1030 (2003) · Zbl 1034.65051
[52] Zhang, YT; Shu, C-W, Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys., 5, 836-848 (2009) · Zbl 1364.65177
[53] Zhang, X.; Shu, C-W, On maximum-principle-satisfying high-order schemes for scalar conservation laws, J. Comput. Phys., 229, 3091-3120 (2010) · Zbl 1187.65096
[54] Zhang, X.; Shu, C-W, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934 (2010) · Zbl 1282.76128
[55] Zhang, X.; Shu, C-W, Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467, 2752-2776 (2011) · Zbl 1222.65107
[56] Zhang, X.; Shu, C-W, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231, 2245-2258 (2012) · Zbl 1426.76493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.