×

The NIRVANA scheme applied to one-dimensional advection. (English) Zbl 0849.76063

The NIRVANA project which is an ongoing quest of an explicit, single-time-step, conservative, flux-based, highly accurate, nonoscillatory finite-volume CFD scheme for multidimensional advection-dominated flows, without restriction on the time-step, has been taken up, and some of the features have been demonstrated by carrying out an analysis for the simplest situation (pure one-dimensional avection at constant velocity on a uniform grid). Finally, from the viewpoint of applied CFD, the paper outlines possible avenues for generalization aimed at the development of practical algorithms for highly advective, nonlinear, multidimensional flows. This makes the study of this paper as of permanent interest.
Reviewer: V.P.Tyagi (Bombay)

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M20 Finite difference methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Staniforth A., Monthly Weather Review. 119. 2206 (1991)
[2] DOI: 10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2 · doi:10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2
[3] DOI: 10.1002/fld.1650151103 · Zbl 0765.76057 · doi:10.1002/fld.1650151103
[4] LeVeque R. J., SIAM J. of Sum. Analysis. 22. No. 6. 1051-1073 (1983), in: A large time step generalization of Godunov’s method for systems of conservation laws
[5] Fletcher C. A. J., Vols I and II (1990)
[6] DOI: 10.1007/978-3-0348-8629-1 · doi:10.1007/978-3-0348-8629-1
[7] DOI: 10.1016/0167-2789(92)90230-K · Zbl 0790.65089 · doi:10.1016/0167-2789(92)90230-K
[8] DOI: 10.1016/0021-9991(84)90143-8 · Zbl 0531.76082 · doi:10.1016/0021-9991(84)90143-8
[9] DOI: 10.1002/cpa.3160130205 · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[10] Leith C. E, Meth. of Comput. Physics 4 pp 1– (1965)
[11] DOI: 10.1016/0021-9991(68)90015-6 · Zbl 0172.20202 · doi:10.1016/0021-9991(68)90015-6
[12] DOI: 10.1016/0045-7825(79)90034-3 · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[13] DOI: 10.1137/0721062 · Zbl 0565.65048 · doi:10.1137/0721062
[14] Chapra S. C., Meth. for Engineers, 2. ed. (1988)
[15] Forsyth G., Computer Solution of Linear Algebraic Systems (1967)
[16] Leonard B. P., NASA TM 106055 (1993)
[17] DOI: 10.1016/0021-9991(79)90145-1 · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[18] DOI: 10.1175/1520-0493(1994)122<1337:CSPTDT>2.0.CO;2 · doi:10.1175/1520-0493(1994)122<1337:CSPTDT>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.