×

On convergence of a structure preserving difference scheme for two-dimensional space-fractional nonlinear Schrödinger equation and its fast implementation. (English) Zbl 1524.65352

Summary: In this paper we intend to construct a structure preserving difference scheme for two-dimensional space-fractional nonlinear Schrödinger (2D SFNS) equation with the integral fractional Laplacian. The temporal direction is discretized by the modified Crank-Nicolson method, and the spatial variable is approximated by a novel fractional central difference method. The mass and energy conservations and the convergence are rigorously proved for the proposed scheme. For 1D SFNS equation, the convergence relies heavily on the \(L^\infty\)-norm boundness of the numerical solution of the proposed scheme. However, we cannot obtain the \(L^\infty\)-norm boundness of the numerical solution by using the similar process for the 2D SFNS equation. One of the major significance of this paper is that we first obtain the \(L^\infty\)-norm boundness of the numerical solution and \(L^2\)-norm error estimate via the popular “cut-off” function for the 2D SFNS equation. Further, we reveal that the spatial discretization generates a block-Toeplitz coefficient matrix, and it will be ill-conditioned as the spatial grid mesh number \(M\) and the fractional order \(\alpha\) increase. Thus, we exploit an linearized iteration algorithm for the nonlinear system, so that it can be efficiently solved by the Krylov subspace solver with a suitable preconditioner, where the 2D fast Fourier transform (2D FFT) is applied in the solver to accelerate the matrix-vector product, and the standard orthogonal projection approach is used to eliminate the drift of mass and energy. Extensive numerical results are reported to confirm the theoretical analysis and high efficiency of the proposed algorithm.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35Q41 Time-dependent Schrödinger equations and Dirac equations
65N06 Finite difference methods for boundary value problems involving PDEs
15B05 Toeplitz, Cauchy, and related matrices
65T50 Numerical methods for discrete and fast Fourier transforms
65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems

Software:

LIMbook
Full Text: DOI

References:

[1] Acosta, G.; Borthagaray, J., A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55, 472-495 (2017) · Zbl 1359.65246
[2] Brugnano, L.; lavernaro, F.; Trigiante, D., A two-step, fourth-order method with energy preserving properties, Comput. Phys. Commun., 183, 1860-1868 (2012) · Zbl 1305.65238
[3] Brugnano, L.; Calvo, M.; Montijano, J.; Rández, L., Energy-preserving methods for Poisson systems, J. Comput. Appl. Math., 236, 3890-3904 (2012) · Zbl 1247.65092
[4] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 1335.65097
[5] Bao, W.; Cai, Y., Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comput., 82, 99-128 (2011) · Zbl 1264.65146
[6] Bao, W.; Cai, Y., Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal., 50, 492-521 (2012) · Zbl 1246.35188
[7] Bao, W.; Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1-135 (2013) · Zbl 1266.82009
[8] Bonito, A.; Lei, W.; Pasciak, J., Numerical approximation of the integral fractional Laplacian, Numer. Math., 142, 235-278 (2019) · Zbl 1414.65032
[9] Cai, W.; Gong, Y.; Wang, Y., An explicit and practically invariants-preserving method for conservative systems
[10] Duo, S.; Zhang, Y., Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Comput. Methods Appl. Mech. Eng., 355, 639-662 (2019) · Zbl 1441.65085
[11] Furihata, D.; Matsuo, T., Discrete Variational Derivative Method. A Structure-Preserving Numerical Method for Partial Differential Equations (2011), Chapman Hall/CRC: Chapman Hall/CRC Boca Raton, FL · Zbl 1227.65094
[12] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb., Sect. A, 142, 1237-1262 (2012) · Zbl 1290.35308
[13] Feng, K.; Qin, M., Symplectic Geometric Algorithms for Hamiltonian Systems (2010), Springer-Verlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House: Springer-Verlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House Berlin/Hangzhou · Zbl 1207.65149
[14] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47, Article 082 pp. (2006) · Zbl 1112.81028
[15] Guo, B.; Han, Y.; Xin, J., Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204, 468-477 (2008) · Zbl 1163.35483
[16] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1094.65125
[17] Huang, Y.; Oberman, A., Numerical methods for the fractional Laplacian: a finite difference-quadrature approach, SIAM J. Numer. Anal., 52, 3056-3084 (2014) · Zbl 1316.65071
[18] Hao, Z.; Zhang, Z.; Du, R., Fractional centered difference scheme for high-dimensional integral fractional Laplacian, J. Comput. Phys., 424, Article 109851 pp. (2020) · Zbl 07508456
[19] Hao, Z.; Zhang, Z., Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations, SIAM J. Numer. Anal., 58, 211-233 (2020) · Zbl 1475.65121
[20] Hu, D.; Cai, W.; Fu, Y.; Wang, Y., Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian, Commun. Nonlinear Sci. Numer. Simul., 99, Article 105786 pp. (2021) · Zbl 1471.65102
[21] Ionescu, A.; Pusateri, F., Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266, 139-176 (2014) · Zbl 1304.35749
[22] Kirkpatrick, K.; Lenzmann, E.; Staffilani, G., On the continuum limit for discrete NLS with long-range lattice interactions, Commun. Math. Phys., 317, 563-591 (2013) · Zbl 1258.35182
[23] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595
[24] Longhi, S., Fractional Schrödinger equation in optics, Opt. Lett., 40, 1117-1120 (2015)
[25] Lischkea, A.; Panga, G.; Guliana, M.; Song, F.; Glusab, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.; Ainsworth, M.; Karniadakis, G., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404, Article 109009 pp. (2020) · Zbl 1453.35179
[26] Mueller, C., The heat equation with Lévy noise, Stoch. Process. Appl., 74, 67-82 (1998) · Zbl 0934.60056
[27] Minden, V.; Ying, L., A simple solver for the fractional Laplacian in multiple dimensions, SIAM J. Sci. Comput., 42 (2020), A878-A900 · Zbl 1437.65242
[28] Pozrikidis, C., The Fractional Laplacian (2016), CRC Press: CRC Press Boca Raton · Zbl 1403.76015
[29] Quispel, G.; McLaren, D., A new class of energy-preserving numerical integration methods, J. Phys. A, Math. Theor., 41, Article 045206 pp. (2008) · Zbl 1132.65065
[30] Sun, W.; Wang, J., Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D, J. Comput. Appl. Math., 317, 685-699 (2017) · Zbl 1357.65148
[31] Sheng, C.; Shen, J.; Tang, T.; Wang, L.; Yuan, H., Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains, SIAM J. Numer. Anal., 58, 2435-2464 (2020) · Zbl 1450.65154
[32] Thomee, V., Galerkin Finite Element Methods for Parabolic Problems (1997), Springer: Springer Berlin · Zbl 0884.65097
[33] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251 (2015) · Zbl 1349.65346
[34] Wang, P.; Huang, C.; Zhao, L., Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306, 231-247 (2016) · Zbl 1382.65260
[35] Wang, P.; Huang, C., Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions, Comput. Math. Appl., 71, 1114-1128 (2016) · Zbl 1443.65145
[36] Wang, T.; Jiang, J.; Xue, X., Unconditional and optimal \(H^1\) error estimate of a Crank-Nicolson finite difference scheme for the nonlinear Schrödinger equation, J. Math. Anal. Appl., 459, 945-958 (2018) · Zbl 1379.65066
[37] Wang, Y.; Mei, L.; Li, Q.; Bu, L., Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation, Appl. Numer. Math., 136, 257-278 (2019) · Zbl 1407.65230
[38] Xu, Z.; Cai, W.; Jiang, C.; Wang, Y., On the L^∞ convergence of a conservative Fourier pseudo-spectral method for the space fractional nonlinear Schrödinger equation, Numer. Methods Partial Differ. Equ., 37, 1591-1611 (2021) · Zbl 07776034
[39] Yin, B.; Wang, J.; Liu, Y.; Li, H., A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations, J. Comput. Phys., 425, Article 109869 pp. (2021) · Zbl 07508481
[40] Zhou, Y., Application of Discrete Functional Analysis to the Finite Difference Methods (1990), International Academic Publishers: International Academic Publishers Beijing
[41] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36, A2865-A2886 (2014) · Zbl 1328.65187
[42] Zhang, L.; Li, C.; Zhong, H.; Xu, C.; Lei, D.; Li, Y.; Fan, D., Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes, Opt. Express, 24, 14406-14418 (2016)
[43] Zhang, R.; Zhang, Y.; Wang, Z.; Chen, B.; Zhang, Y., A conservative numerical method for the fractional nonlinear Schrödinger equation in two dimensions, Sci. China Math., 62, 1997-2014 (2019) · Zbl 1427.65334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.