×

Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. (English) Zbl 1441.65085

Summary: In this paper, we propose accurate and efficient finite difference methods to discretize the two- and three-dimensional fractional Laplacian \((- \Delta)^{\frac{\alpha}{2}}\) (\(0 < \alpha < 2\)) in hypersingular integral form. The proposed methods provide a fractional analogue of the central difference schemes to the fractional Laplacian. As \(\alpha \rightarrow 2^-\), they collapse to the central difference schemes of the classical Laplace operator \(- \Delta \). We prove that our methods are consistent if \(u \in C^{\lfloor \alpha \rfloor, \alpha - \lfloor \alpha \rfloor + \varepsilon}(\mathbb{R}^d)\), and the local truncation error is \(\mathcal{O}(h^\varepsilon)\), with \(\varepsilon > 0\) a small constant and \(\lfloor \cdot \rfloor\) denoting the floor function. If \(u \in C^{2 + \lfloor \alpha \rfloor, \alpha - \lfloor \alpha \rfloor + \varepsilon}(\mathbb{R}^d)\), they can achieve the second order of accuracy for any \(\alpha \in(0, 2)\). These results hold for any dimension \(d \geq 1\) and thus improve the existing error estimates of the one-dimensional cases in the literature. Extensive numerical experiments are provided and confirm our analytical results. We then apply our method to solve the fractional Poisson problems and the fractional Allen-Cahn equations. Numerical simulations suggest that to achieve the second order of accuracy, the solution of the fractional Poisson problem should at most satisfy \(u \in C^{1, 1}(\mathbb{R}^d)\). One merit of our methods is that they yield a multilevel Toeplitz stiffness matrix, an appealing property for the development of fast algorithms via the fast Fourier transform (FFT). Our studies of the two- and three-dimensional fractional Allen-Cahn equations demonstrate the efficiency of our methods in solving the high-dimensional fractional problems.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations

References:

[1] del Castillo-Negrete, D.; Carreras, B. A.; Lynch, V. E., Front dynamics in reaction – diffusion systems with Lévy flights: A fractional diffusion approach, Phys. Rev. Lett., 91, Article 018302 pp. (2003)
[2] Hanert, E.; Schumacher, E.; Deleersnijder, E., Front dynamics in fractional-order epidemic models, J. Theoret. Biol., 279, 9-16 (2011) · Zbl 1397.92636
[3] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[4] Cusimano, N.; Bueno-Orovio, A.; Turner, I.; Burrage, K., On the order of the fractional Laplacian in determining the spatio-temporal evolution of a space-fractional model of cardiac electrophysiology, PLOS ONE, 10, e0143938 (2015)
[5] Clark, J. S.; Lewis, M.; Horvath, L., Invasion by extremes: Population spread with variation in dispersal and reproduction, Am. Nat., 157, 537-554 (2001)
[6] Paradis, E.; Baillie, S. R.; Sutherland, W. J., Modeling large-scale dispersal distances, Ecol. Model., 151, 279-292 (2002)
[7] Tackenberg, O., Modeling long-distance dispersal of plant diaspores by wind, Ecol. Monogr., 73, 173-189 (2003)
[8] Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0253.31001
[9] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
[10] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023
[11] Kwaśnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 7-51 (2017) · Zbl 1375.47038
[12] Duo, S.; Wang, H.; Zhang, Y., A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. B, 24, 231-256 (2019) · Zbl 1404.45003
[13] Izsák, F.; Szekeres, B., Models of space-fractional diffusion: A critical review, Appl. Math. Lett., 71, 38-43 (2017) · Zbl 1524.35698
[14] Kullberg, A.; del Castillo-Negrete, D.; Morales, G. J.; Maggs, J. E., Isotropic model of fractional transport in two-dimensional bounded domains, Phys. Rev. E, 87, Article 052115 pp. (2013)
[15] Acosta, G.; Borthagaray, J. P., A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55, 472-495 (2017) · Zbl 1359.65246
[16] Acosta, G.; Bersetche, F. M.; Borthagaray, J. P., A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Comput. Math. Appl., 74, 784-816 (2017) · Zbl 1384.65081
[17] Bonito, A.; Lei, W.; Pasciak, J. E., Numerical approximation of the integral fractional Laplacian, Numer. Math., 142, 235-278 (2019) · Zbl 1414.65032
[18] Bonito, A.; Borthagaray, J. P.; Nochetto, R. H.; Otárola, E.; Salgado, A. J., Numerical methods for fractional diffusion, Comput. Vis. Sci., 19, 19-46 (2018) · Zbl 07704543
[19] M. Ainsworth, C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, in: J. Dick, F. Kuo, H. Woźniakowski (Eds.) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, Springer, Cham.; M. Ainsworth, C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, in: J. Dick, F. Kuo, H. Woźniakowski (Eds.) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, Springer, Cham. · Zbl 1407.65276
[20] Zhang, Z., Error estimates of spectral Galerkin methods for a linear fractional reaction – diffusion equation, J. Sci. Comput., 78, 1087-1110 (2019) · Zbl 1462.65214
[21] Duo, S.; van Wyk, H. W.; Zhang, Y., A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355, 233-252 (2018) · Zbl 1380.65323
[22] Huang, Y.; Oberman, A., Numerical methods for the fractional laplacian: a finite difference-quadrature approach, SIAM J. Numer. Anal., 52, 3056-3084 (2014) · Zbl 1316.65071
[23] Gao, T.; Duan, J.; Li, X.; Song, R., Mean exit time and escape probability for dynamical systems driven by Lévy noises, SIAM J. Sci. Comput., 36, A887-A906 (2014) · Zbl 1318.60065
[24] Duo, S.; Zhang, Y., Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18, 321-350 (2015) · Zbl 1388.65051
[25] Du, N.; Wang, H., A fast finite element method for space-fractional dispersion equations on bounded domains in \(R^2\), SIAM J. Sci. Comput., 37, A1614-A1635 (2015) · Zbl 1331.65175
[26] Pečarić, J. E., On the Cebyšev inequality, Bul. Ştiinţ. Tehn. Inst. Politehn. Traian Vuia Timişoara, 25, 5-9 (1980) · Zbl 0478.26009
[27] Khan, A. R.; Pečarić, J.; Praljak, M., Weighted Montgomery’s identities for higher order differentiable functions of two variables, Rev. Anal. Numér. Théor. Approx., 42, 49-71 (2013) · Zbl 1313.26034
[28] Beesack, P. R.; Pečarić, J. E., Integral inequalities of Chebyshev’s type, J. Math. Anal. Appl., 111, 643-659 (1985) · Zbl 0582.26005
[29] Dyda, B., Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15, 536-555 (2012) · Zbl 1312.35176
[30] Song, F.; Xu, C.; Karniadakis, G. E., A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations, Comput. Methods Appl. Mech. Engrg., 305, 376-404 (2016) · Zbl 1423.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.