×

Topological type of discriminants of some special families. (English) Zbl 1524.14079

Summary: We will describe the topological type of the discriminant curve of the morphism \((\ell, f)\), where \(\ell\) is a smooth curve and \(f\) is an irreducible curve (branch) of multiplicity less than five or a branch such that the difference between its Milnor number and Tjurina number is less than 3. We prove that for a branch of these families, the topological type of the discriminant curve is determined by the semigroup, the Zariski invariant and at most two other analytical invariants of the branch.

MSC:

14J17 Singularities of surfaces or higher-dimensional varieties
32S15 Equisingularity (topological and analytic)

References:

[1] V. Bayer, A. Hefez. Algebroid plane curves whose Milnor and Tjurina numbers differ by one or two. Bol. Soc. Brasil. Mat. (N.S.) 32(1), 63-81 (2001) · Zbl 1040.14017
[2] Casas-Alvero, E., Local geometry of planar analytic morphisms, Asian J. Math., 11, 3, 373-426 (2007) · Zbl 1137.14006 · doi:10.4310/AJM.2007.v11.n3.a3
[3] A. Chenciner. Courbes algébriques planes. Publications Mathématiques de l’Université Paris VII, 1978 · Zbl 0557.14016
[4] E. R. García Barroso, J. Gwoździewicz, A discriminant criterion of irreducibility. Kodai Math. J. 35(2), 403-414 (2012) · Zbl 1251.32023
[5] E.R. García Barroso, J. Gwoździewicz, A. Lenarcik, Non-degeneracy of the discriminant. Acta Math. Hungar. 147(1), 220-246. doi:10.1007/s10474-015-0515-8 (2015) · Zbl 1374.32009
[6] E.R. García Barroso, A. Lenarcik, A. Płoski, Characterization of non-degenerate plane curve singularities. Univ. Iagel. Acta Math. No. 45, 27-36 (2007) · Zbl 1192.32016
[7] A. Hefez. Irreducible Plane Curve Singularities. Sixth Worhshop at Sao Carlos. (2003), 1-120 · Zbl 1080.14036
[8] Hefez, A.; Hernandes, ME, Analytic classification of plane branches up to multiplicity 4, J. Symb. Comput., 44, 626-634 (2009) · Zbl 1168.14003 · doi:10.1016/j.jsc.2008.09.003
[9] A. Hefez, M.E. Hernandes, M.F. Hernández Iglesias, On Polars of Plane Branches In: Cisneros-Molina J., Tráng Lê D., Oka M., Snoussi J. (eds) Singularities in Geometry, Topology, Foliations and Dynamics. Trends in Mathematics. Birkhäuser (2017), 135-153 · Zbl 1427.32022
[10] A. Hefez; M.E. Hernandes; M.F. Hernández Iglesias, Plane branches with Newton non-degenerate polars. Int. J. Math. 29(1), 1850001 (2018) · Zbl 1387.32035
[11] M.F. Hernández Iglesias, Polar de um germe de curva irredutível plana. PhD thesis. Universidade Federal Fluminense, Brasil (2012)
[12] Merle, M., Invariants polaires des courbes planes, Invent. Math., 41, 103-111 (1977) · Zbl 0371.14003 · doi:10.1007/BF01418370
[13] M. Oka, Non-Degenerate Complete Intersection Singularity, Actualités Mathématiques. Hermann, Paris, viii+309 pp (1997) · Zbl 0930.14034
[14] B. Teissier, Varietés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40, 267-292 (1977) · Zbl 0446.32002
[15] Zariski, O., Characterization of plane algebroid curves whose module of differentials has maximum torsion, Proc. Nat. Acad. Sci., 56, 781-786 (1966) · Zbl 0144.20201 · doi:10.1073/pnas.56.3.781
[16] O. Zariski, The moduli problem for plane branches, with an appendix by Bernard Teissier. University Lectures Series, Volume 39, AMS 2006, pp. 151 · Zbl 1107.14021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.