×

Non-degeneracy of the discriminant. (English) Zbl 1374.32009

For a plane curve singularity \(f\colon (\mathbb C^2,0)\to (\mathbb C,0)\) and a nonsingular \(l\colon (\mathbb{C}^2,0)\to (\mathbb{C},0)\) (whose zero set is not a component of \(f=0\)), one considers the polar curve of the mapping \((l,f)\) and its image. Any equation for this image is called the discriminant \(\mathcal D(u,v)\). Its Newton diagram is the Jacobian Newton diagram, introduced by B. Teissier [Invent. Math. 40, 267–292 (1977; Zbl 0446.32002)]. It depends only on the topological type of \((l,f)\).
This paper studies the factorisation of the discriminant. It specifies formulas for the weighted initial forms of each factor. In particular, it is determined for which curves the discriminant is non-degenerate for its Newton diagram. For irreducible \(f\) this is the case if and only if there are no lattice points inside the compact edges. Therefore non-degeneracy depends only on the topological type of \((l,f)\). This is no longer true for reducible curves. The Authors obtain a criterion for non-degeneracy. They give an example of curves with arbitrary many singular branches and non-degenerate discriminants.
Finally they show that non-degeneracy of the discriminant of \((l,f)\) depends only on the curve \(f=0\) (with \(l\) fixed). Fot \(f\) unitangent one can also change \(l\), provided it is transverse. An example shows that the condition unitangent cannot be omitted.

MSC:

32S05 Local complex singularities
14H20 Singularities of curves, local rings

Citations:

Zbl 0446.32002

References:

[1] Casas-Alvero E.: Local geometry of planar analytic morphisms. Asian J. Math. 11, 373-426 (2007) · Zbl 1137.14006 · doi:10.4310/AJM.2007.v11.n3.a3
[2] H. Eggers, Polarinvarianten und die Topologie von Kurvensingularitäten Bonner Mathematische Schriften 147 (1982). · Zbl 0559.14018
[3] Ephraim R.: Special polars and curves with one place at infinity. Proc. Symp. Pure Math. 40, 353-359 (1983) · Zbl 0537.14020 · doi:10.1090/pspum/040.1/713074
[4] E. R. García Barroso, Invariants des singularités de courbes planes et courbure des fibres de Milnor Doctoral thesis, La Laguna University, 1996. Servicio de Publicaciones de la Universidad de La Laguna (2004), 216 pp. · Zbl 0378.32001
[5] E. García Barroso and J. Gwoździewicz, A discriminant criterion of irreducibility, Kodai Math. J. 35 (2012), 403-414. · Zbl 1251.32023
[6] Gwoździewicz J: Invariance of the Jacobian Newton diagram. Math. Res. Lett. 19, 377-382 (2012) · Zbl 1274.14004 · doi:10.4310/MRL.2012.v19.n2.a9
[7] J. Gwoździewicz, Ephraim’s pencils, Int. Math. Res. Not. IMRN15 (2013), 3371-3385. doi:10.1093/imrn/rns148 · Zbl 1314.32041
[8] J. Gwoździewicz, A. Lenarcik and A. Płoski, Polar invariants of plane curve singularities: intersection theoretical approach, Demonstratio Math. 43 (2010), 303-323. · Zbl 1202.14026
[9] Gwoździewicz J., Płoski A.: On the Merle formula for polar invariants. Bull. Soc. Sci. Lett. Łódź 41, 61-67 (1991) · Zbl 0893.32006
[10] J. Gwoździewicz and A. Płoski, On the polar quotients of an analytic plane curve, Kodai Math. J. 25 (2002), 43-53. · Zbl 1007.32018
[11] S. Izumi, S. Koike and T. C. Kuo, Computations and stability of the Fukui invariant, Compositio Math. 130 (2002), 49-73. · Zbl 1007.58023
[12] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31. · Zbl 0328.32007
[13] Kuo T.C., Lu Y.C.: On analytic function germs of two complex variables. Topology 16, 299-310 (1977) · Zbl 0378.32001 · doi:10.1016/0040-9383(77)90037-4
[14] T. C. Kuo and A. Parusiński, Newton-Puiseux roots of Jacobian determinants, J. Algebraic Geom. 13 (2004), 579-601. · Zbl 1061.32002
[15] A. Lenarcik, M. Masternak and A. Płoski, Factorization of the polar curve and the Newton polygon, Kodai Math. J. 26 (2003), 288-303. · Zbl 1083.32026
[16] Lenarcik A.: Polar quotients of a plane curve and the Newton algorithm. Kodai Math. J. 27, 336-353 (2004) · Zbl 1083.32025 · doi:10.2996/kmj/1104247355
[17] A. Lenarcik, On the Łojasiewicz exponent, special direction and the maximal polar quotientarXiv:1112.5578. · Zbl 0924.32007
[18] Merle M.: Invariants polaires des courbes planes. Invent. Math. 41, 103-111 (1977) · Zbl 0371.14003 · doi:10.1007/BF01418370
[19] F. Michel, Jacobian curves for normal complex surfaces, Contemp. Math. 475 (2008), 135-150. · Zbl 1160.14026
[20] Teissier B.: Variétés polaires. I. Invariants polaires des singularités des hypersurfaces. Invent. Math. 40, 267-292 (1977) · Zbl 0446.32002 · doi:10.1007/BF01425742
[21] B. Teissier, The hunting of invariants in the geometry of discriminants, in: Proc. Ninth Nordic Summer School Oslo, 1976 (1978), pp. 565-678. · Zbl 0446.32002
[22] B. Teissier, Polyèdre de Newton jacobien et équisingularité, Seminaire sur les Singularités, Publ. Math. Univ. Paris VII7 (1980), 193-221. See also ArXiv: 1203.5595.
[23] R. J. Walker, Algebraic Curves Princeton Mathematical Series, vol. 13. Princeton University Press (Princeton, N.J., 1950), 201 pp. · Zbl 0039.37701
[24] O. Zariski, Le problème des modules pour les branches planes Hermann (Paris, 1986), 212 pp. · Zbl 0592.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.