×

Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies. (English) Zbl 1523.74003

Summary: In our study we construct a boundary value problem in elasticity of porous piezoelectric bodies with a dipolar structure To construct an eigenvalue problem in this context, we consider two operators defined on adequate Hilbert spaces. We prove that the two operators are positive and self adjoint, which allowed us to show that any eigenvalue is a real number and two eigenfunctions which correspond to two distinct eigenvalues are orthogonal. With the help of a Rayleigh quotient type functional, a variational formulation for the eigenvalue problem is given. Finally, we consider a disturbation analysis in a particular case. It must be emphasized that the porous piezoelectric bodies with dipolar structure addressed in this study are considered in their general form, i.e.,inhomogeneous and anisotropic.

MSC:

74A35 Polar materials
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F15 Electromagnetic effects in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Cady, WG, Piezoelectricity (1946), New York: McGraw Hill Book Company, New York
[2] Mason, WP, Piezoelectric Crystals and Their Application to Ultrasonics (1950), New York: D. Van Nostrand Company, New York
[3] Tiersten, HF, Linear Piezoelectric Plate Vibrations (1969), New York: Plenum Press, New York · doi:10.1007/978-1-4899-6453-3
[4] Mindlin, RD, High-frequency vibrations of piezoelectric crystal plates, Int. J. Solid Struct., 8, 895-906 (1972) · Zbl 0243.73059 · doi:10.1016/0020-7683(72)90004-2
[5] Mindlin, RD, Equation of high frequency of thermopiezoelectric crystals plate, Int. J. Solid Struct., 10, 625-637 (1974) · Zbl 0282.73068 · doi:10.1016/0020-7683(74)90047-X
[6] Nowacki, W., Fundation of Linear Piezoelectricity (1979), Wein: Springer, Wein
[7] Chandrasekharaiah, DS, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mech., 71, 1-4, 39-49 (1988) · Zbl 0631.73092 · doi:10.1007/BF01173936
[8] Iesan, D., Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity, Int. J. Eng. Sci., 28, 1139-1149 (1990) · Zbl 0718.73071 · doi:10.1016/0020-7225(90)90113-W
[9] Morro, A.; Straughan, B., A uniqueness theorem in the dynamical theory of piezoelectricity, Math. Methods Appl. Sci., 14, 295-299 (1991) · Zbl 0725.73023 · doi:10.1002/mma.1670140502
[10] Yang, JS; Batra, RC, Conservation laws in linear piezoelectricity, Eng. Fract. Mech., 51, 1041-1047 (1995) · doi:10.1016/0013-7944(94)00271-I
[11] Ciarletta, M.; Scalia, A., Thermodynamic theory for porous piezoelectric materials, Meccanica, 28, 303-308 (1993) · Zbl 0804.73048 · doi:10.1007/BF00987166
[12] Craciun, IA, Uniqueness theorem in the linear theory of piezoelectric micropolar thermoelasticity, Int. J. Eng. Sci., 33, 1027-1036 (1995) · Zbl 0899.73449 · doi:10.1016/0020-7225(94)00106-T
[13] Karamany, ASE, Uniqueness theorem and Hamilton’s principle in linear micropolar thermopiezoelctric/piezomagnetic continuum with two relaxation times, Meccanica, 44, 47-59 (2009) · Zbl 1163.74495 · doi:10.1007/s11012-008-9144-4
[14] Sharma, K.; Marin, M., Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space, U. P. B. Sci. Bull. Ser. A Appl. Math. Phys., 75, 2, 121-132 (2013) · Zbl 1289.74028
[15] Iesan, D.; Quintanilla, R., Some theorems in the theory of microstretch thermo-piezoelectricity, Int. J. Eng. Sci., 45, 1-16 (2007) · Zbl 1213.74021 · doi:10.1016/j.ijengsci.2006.10.001
[16] Vlase, S., Coupled transverse and torsional vibrations in a mechanical system with two identical beams, AIP Adv., 7, 6, 065301 (2017) · doi:10.1063/1.4985271
[17] Vlase, S., Energy of accelerations used to obtain the motion equations of a three-dimensional finite element, Symmetry, 12, 2, 321 (2020) · doi:10.3390/sym12020321
[18] Scutaru, ML, New analytical method based on dynamic response of planar mechanical elastic systems, Bound. Value Probl., 2020, 1, 104 (2020) · Zbl 1499.70006 · doi:10.1186/s13661-020-01401-9
[19] Marin, M., On the decay of exponential type for the solutions in a dipolar elastic body, J. Taibah Univ. Sci., 14, 1, 534-540 (2020) · doi:10.1080/16583655.2020.1751963
[20] Alzahrani, F., An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities, Symmetry, 12, 5, 848 (2020) · doi:10.3390/sym12050848
[21] Abo-Dahab, SM, Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, 12, 7, 1094 (2020) · doi:10.3390/sym12071094
[22] Marin, M.; Öchsner, A., An initial boundary value problem for modeling a piezoelectric dipolar body, Contin. Mech. Thermodyn., 30, 267-278 (2018) · Zbl 1392.74040 · doi:10.1007/s00161-017-0599-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.