×

An initial boundary value problem for modeling a piezoelectric dipolar body. (English) Zbl 1392.74040

Summary: This study deals with the first initial boundary value problem in elasticity of piezoelectric dipolar bodies. We consider the most general case of an anisotropic and inhomogeneous elastic body having a dipolar structure. For two different types of restrictions imposed on the problem data, we prove two results regarding the uniqueness of solution, by using a different but accessible method. Then, the mixed problem is transformed in a temporally evolutionary equation on a Hilbert space, conveniently constructed based on the problem data. With the help of a known result from the theory of semigroups of operators, the existence and uniqueness of the weak solution for this equation are proved.

MSC:

74F15 Electromagnetic effects in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Eringen, AC, Theory of thermo-microstretch elastic solids, Int. J. Eng. Sci., 28, 1291-1301, (1990) · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[2] Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999) · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[3] Iesan, D; Pompei, A, Equilibrium theory of microstretch elastic solids, Int. J. Eng. Sci., 33, 399-410, (1995) · Zbl 0899.73461 · doi:10.1016/0020-7225(94)00067-T
[4] Iesan, D; Quintanilla, R, Thermal stresses in microstretch bodies, Int. J. Eng. Sci., 43, 885-907, (2005) · Zbl 1211.74146 · doi:10.1016/j.ijengsci.2005.03.005
[5] Marin, M, The Lagrange identity method in thermoelasticity of bodies with microstructure, Int. J. Eng. Sci., 32, 1229-1240, (1994) · Zbl 0899.73068 · doi:10.1016/0020-7225(94)90034-5
[6] Marin, M, On weak solutions in elasticity of dipolar bodies with voids, J. Comput. Appl. Math., 82, 291-297, (1997) · Zbl 0890.73002 · doi:10.1016/S0377-0427(97)00047-2
[7] Ciarletta, M, On the bending of microstretch elastic plates, Int. J. Eng. Sci., 37, 1309-1318, (1995) · Zbl 1210.74108 · doi:10.1016/S0020-7225(98)00123-2
[8] Marin, M, Harmonic vibrations in thermoelasticity of microstretch materials, J. Vib. Acoust. Trans. ASME, 132, 044501-1-044501-6, (2010) · doi:10.1115/1.4000971
[9] Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Continuum Mech. Thermodyn. (2017). doi:10.1007/s00161-017-0585-7 · Zbl 1392.74010
[10] Straughan, B.: Heat waves. In: Applied Mathematical Sciences, vol. 177. Springer, New York (2011) · Zbl 1232.80001
[11] Sharma, K; Marin, M, Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space, U.P.B. Sci. Bull. Ser. A Appl. Math. Phys., 75, 121-132, (2013) · Zbl 1289.74028
[12] Mindlin, RD, Equation of high frequency of thermopiezoelectric crystals plate, Int. J. Solid Struct., 10, 625-637, (1974) · Zbl 0282.73068 · doi:10.1016/0020-7683(74)90047-X
[13] Nowacki, W.: Fundation of Linear Piezoelectricity. Springer, Wein (1979)
[14] Chandrasekharaiah, DS, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mech., 71, 39-49, (1988) · Zbl 0631.73092 · doi:10.1007/BF01173936
[15] Lee, JD; Chen, Y; Eskandarian, A, A micromorphic electromagnetic theory, Int. J. Solids Struct., 41, 2099-2110, (2004) · Zbl 1072.74023 · doi:10.1016/j.ijsolstr.2003.11.031
[16] Iesan, D, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. A, 464, 631-657, (2008) · Zbl 1132.74013 · doi:10.1098/rspa.2007.0264
[17] Gales, C, Some results in micromorphic piezoelectricity, Eur. J. Mech. A Solids, 31, 37-46, (2012) · Zbl 1278.74050 · doi:10.1016/j.euromechsol.2011.06.014
[18] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78, (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[19] Green, AE; Rivlin, RS, Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17, 113-147, (1964) · Zbl 0133.17604 · doi:10.1007/BF00253051
[20] Fried, E; Gurtin, ME, Thermomechanics of the interface between a body and its environment, Contin. Mech. Thermodyn., 19, 253-271, (2007) · Zbl 1160.74303 · doi:10.1007/s00161-007-0053-x
[21] Knops, RJ; Payne, LE, On uniqueness and continuous data dependence in dynamical problems of linear thermoelasticity, Int. J. Solids Struct., 6, 1173-1184, (1970) · Zbl 0209.56605 · doi:10.1016/0020-7683(70)90054-5
[22] Levine, HA, On a theorem of knops and payne in dynamical thermoelasticity, Arch. Ration. Mech. Anal., 38, 290-307, (1970) · Zbl 0233.73024 · doi:10.1007/BF00281526
[23] Rionero, S; Chirita, S, The Lagrange identity method in linear thermoelasticity, Int. J. Eng. Sci., 25, 935-947, (1987) · Zbl 0617.73007 · doi:10.1016/0020-7225(87)90126-1
[24] Wilkes, NS, Continuous dependence and instability in linear thermoelasticity, SIAM J. Appl. Math., 11, 292-299, (1980) · Zbl 0433.73013 · doi:10.1137/0511027
[25] Morro, A; Straughan, B, A uniqueness theorem in the dynamical theory of piezoelectricity, Math. Methods Appl. Sci., 14, 295-299, (1991) · Zbl 0725.73023 · doi:10.1002/mma.1670140502
[26] Iesan, D; Quintanilla, R, Some theorems in the theory of microstretch thermopiezoelectricity, Int. J. Eng. Sci., 45, 1-16, (2007) · Zbl 1213.74021 · doi:10.1016/j.ijengsci.2006.10.001
[27] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[28] Pazy, A.: Semigroups of Operators of Linear Operators and Applications. Springer, New York (1983) · Zbl 0516.47023
[29] Mikhlin, S.G.: The Problem of the Minimum of a Quadratic Functional. Holden-Day, Inc., San Francisco (1965) · Zbl 0121.32801
[30] Craciun, EM; Baesu, E; Soós, E, General solution in terms of complex potentials in antiplane states in prestressed and prepolarized piezoelectric crystals: application to mode III fracture propagation, IMA J. Appl. Math., 70, 39-52, (2005) · Zbl 1073.74025 · doi:10.1093/imamat/hxh060
[31] Cringanu, J, Multiple solutions of a multivalued Neumann problem, Math. Rep., 8 (58), 131-135, (2006) · Zbl 1150.35052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.