×

Locally conformally Hessian and statistical manifolds. (English) Zbl 1523.53021

Summary: A statistical manifold \((M, D, g)\) is a manifold \(M\) endowed with a torsion-free connection \(D\) and a Riemannian metric \(g\) such that the tensor Dg is totally symmetric. If \(D\) is flat then \((M, g, D)\) is a Hessian manifold. A locally conformally Hessian (l.c.H.) manifold is a quotient of a Hessian manifold \((C, \nabla, g)\) such that the monodromy group acts on \(C\) by Hessian homotheties, i.e. this action preserves \(\nabla\) and multiplies \(g\) by a group character. The l.c.H. rank is the rank of the image of this character considered as a function from the monodromy group to real numbers. A l.c.H. manifold is called radiant if the Lee vector field \(\xi\) is Killing and satisfies \(\nabla \xi = \lambda \operatorname{Id} \). We prove that the set of radiant l.c.H. metrics of l.c.H. rank 1 is dense in the set of all radiant l.c.H. metrics. We prove a structure theorem for compact radiant l.c.H. manifold of l.c.H. rank 1. Every such manifold \(C\) is fibered over a circle, the fibers are statistical manifolds of constant curvature, the fibration is locally trivial, and \(C\) is reconstructed from the statistical structure on the fibers and the monodromy automorphism induced by this fibration.

MSC:

53B12 Differential geometric aspects of statistical manifolds and information geometry
53B05 Linear and affine connections

References:

[1] Alexeevski, D., Self-similar Lorentzian manifolds, Ann. Glob. Anal. Geom., 3, 59 (1985) · Zbl 0538.53060
[2] Amari, S.; Nagaoka, H., Methods of Information Geometry (2000), AMS: AMS Providence, RI · Zbl 0960.62005
[3] Benoist, Y., A survey on divisible convex sets, (Geometry, Analysis and Topology of Discrete Groups. Geometry, Analysis and Topology of Discrete Groups, Adv. Lect. Math. (ALM), vol. 6 (2008), Int. Press: Int. Press Somerville, MA), 1-18 · Zbl 1154.22016
[4] Fried, D.; Goldman, W.; Hirsch, M., Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56, 487-523 (1981) · Zbl 0516.57014
[5] Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K.; Shahid, M. H., Sasakian statistical manifolds, J. Geom. Phys., 117, 179-186 (2017) · Zbl 1365.53032
[6] Gallot, S., Équations différentielles caractéristiques de la sphère, Ann. Sci. Éc. Norm. Supér. (4), 12, 2, 235-267 (1979) · Zbl 0412.58009
[7] Goldman, W. M., Projective Geometry on Manifolds, Lecture Notes for Mathematics, vol. 748B (Spring 1988), University of Maryland
[8] Gini, R.; Ornea, L.; Parton, M.; Piccinni, P., Reduction of Vaisman structures in complex and quaternionic geometry, J. Geom. Phys., 56, 2501-2522 (2006) · Zbl 1109.53070
[9] Garcıa-Ariza, M. A., Degenerate Hessian structures on radiant manifolds, Int. J. Geom. Methods Mod. Phys., 15 (2018), 15 pp. · Zbl 1457.80002
[10] Kobayashi, S.; Ohno, Y., On a constant curvature statistical manifold, Inf. Geom., 5, 31-46 (2022) · Zbl 1497.53038
[11] Koszul, J. L., Variétés localement plates et convexité, Osaka J. Math., 2, 285-290 (1965) · Zbl 0173.50001
[12] Kurose, T., Dual connections and affine geometry, Math. Z., 203, 115-121 (1990) · Zbl 0696.53005
[13] Labourie, F., Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q., 3, 1057-1099 (2007) · Zbl 1158.32006
[14] Osipov, P., Selfsimilar Hessian manifolds, J. Geom. Phys., 175 (2022) · Zbl 1492.53019
[15] Osipov, P., Self-similar Hessian and conformally Kähler manifolds, Ann. Glob. Anal. Geom., 62, 479-488 (2022) · Zbl 1507.53054
[16] Osipov, P., Statistical Lie algebras of constant curvature and locally conformally Kähler Lie algebras, Bull. Math. Roum., 65 (113), 3, 341-358 (2022) · Zbl 07691476
[17] Ornea, L.; Verbitsky, M., Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10, 799-805 (2003) · Zbl 1052.53051
[18] Ornea, L.; Verbitsky, M., Sasakian structures on CR-manifolds, Geom. Dedic., 125, 159-173 (2007) · Zbl 1125.53056
[19] Ornea, L.; Verbitsky, M., LCK rank of locally conformally Kähler manifolds with potential, J. Geom. Phys., 107, 92-98 (2016) · Zbl 1347.53058
[20] Ornea, L.; Verbitsky, M., Principles of locally conformally Kahler geometry · Zbl 1230.53068
[21] Ornea, L.; Verbitsky, M., Locally conformal Kähler manifolds with potential, Math. Ann., 348, 25-33 (2010) · Zbl 1213.53090
[22] Ornea, L.; Verbitsky, M., Topology of locally conformally Kähler manifolds with potential, Int. Math. Res. Not., 717-726 (2010) · Zbl 1188.53080
[23] Sasaki, T., Hyperbolic affine hyperspheres, Nagoya Math. J., 77, 107, 123 (1980) · Zbl 0404.53003
[24] Shima, H., The Geometry of Hessian Structures (2007), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Singapore · Zbl 1244.53004
[25] Vaisman, I., Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. (6), 12, 2, 263-284 (1979) · Zbl 0447.53032
[26] Vaisman, I., On locally and globally conformal Kähler manifolds, Trans. Am. Math. Soc., 262, 533-542 (1980) · Zbl 0446.53048
[27] Vinberg, E. B., The theory of convex homogeneous cones, Trans. Mosc. Math. Soc., 12, 340-403 (1963) · Zbl 0138.43301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.