×

On a constant curvature statistical manifold. (English) Zbl 1497.53038

Summary: We will show that a statistical manifold \((M, g, \nabla)\) has a constant curvature if and only if it is a projectively flat conjugate symmetric manifold, that is, the affine connection \(\nabla\) is projectively flat and the curvatures satisfies \(R=R^*\), where \(R^*\) is the curvature of the dual connection \(\nabla^*\). Moreover, we will show that properly convex structures on a projectively flat compact manifold induces constant curvature \(-1\) statistical structures and vice versa.

MSC:

53B12 Differential geometric aspects of statistical manifolds and information geometry
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)

References:

[1] Amari, S., Differential-Geometrical Methods in Statistics (1985), Berlin: Springer, Berlin · Zbl 0559.62001 · doi:10.1007/978-1-4612-5056-2
[2] Amari, S.; Nagaoka, H., Method of Information Geometry (2000), Oxford: Amer. Math. Soc. Oxford Univ. Press, Oxford · Zbl 0960.62005
[3] Bokan, N.; Nomizu, K.; Simon, U., Affine hypersurfaces with parallel cubic forms, Tohoku Math. J. (2), 42, 1, 101-108 (1990) · Zbl 0696.53006 · doi:10.2748/tmj/1178227697
[4] Calin, O.; Udrişte, C., Geometric Modeling in Probability and Statistics (2014), Cham: Springer, Cham · Zbl 1325.60001 · doi:10.1007/978-3-319-07779-6
[5] Eisenhart, L.P.: Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ. 8 (1927) · JFM 53.0681.02
[6] Furuhata, H.; Inoguchi, J.; Kobayashi, S-P, A characterization of the alpha-connections on the statistical manifold of normal distributions, Inf. Geom., 4, 1, 1-12 (2020) · Zbl 1473.53023
[7] Globke, W.; Quiroga-Barranco, R., Information geometry and asymptotic geodesics on the space of normal distributions, Inf. Geom., 4, 1, 131-153 (2021) · Zbl 1473.53024 · doi:10.1007/s41884-021-00049-3
[8] Goldman, WM, Convex real projective structures on compact surfaces, J. Differ. Geom., 31, 3, 791-845 (1990) · Zbl 0711.53033 · doi:10.4310/jdg/1214444635
[9] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry II, Interscience Tracts in Pure and Applied Math (1969), Geneva: Interscience Publishers, Geneva · Zbl 0175.48504
[10] Kobayashi, S.P., Ohno, Y.: On a constant curvature statistical manifold (2020). PreprintarXiv:2008.13394
[11] Kurose, T., Dual connections and affine geometry, Math. Z., 203, 1, 115-121 (1990) · Zbl 0696.53005 · doi:10.1007/BF02570725
[12] Labourie, F., Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q., 3, 1057-1099 (2007) · Zbl 1158.32006 · doi:10.4310/PAMQ.2007.v3.n4.a10
[13] Lauritzen, S.L.: Statistical manifolds. In: Differential Geometry in Statistical Inference, IMS Lecture Notes: Monograph Series, vol. 10. Institute of Mathematical Statistics, Hayward, California, pp. 163-216 (1987) · Zbl 0694.62001
[14] Loftin, J.C.: Affine spheres and convex \(\mathbb{RP}^n\)-manifolds. Am. J. Math. 3(2), 255-274 (2001) · Zbl 0997.53010
[15] Mikeš, J., Stepanova, E.: A five-dimensional Riemannian manifold with an irreducible \({\rm SO}(3)\)-structure as a model of abstract statistical manifold. Ann. Glob. Anal. Geom. 45(2), 111-128 (2014) · Zbl 1292.53025
[16] Nomizu, K.; Sasaki, T., Affine Differential Geometry (1994), Oxford: Cambridge Univ, Oxford · Zbl 0834.53002
[17] Opozda, B., Bochner’s technique for statistical structures, Ann. Glob. Anal. Geom., 48, 357-395 (2015) · Zbl 1333.53025 · doi:10.1007/s10455-015-9475-z
[18] Opozda, B., A sectional curvature for statistical structures, Linear Algebra Appl., 497, 134-161 (2016) · Zbl 1338.53034 · doi:10.1016/j.laa.2016.02.021
[19] Rylov, A.: Constant curvature connections on statistical models. In:Information Geometry and its Applications, Springer Proc. Math. Stat., vol. 252. Springer, Cham, pp. 349-361 (2018) · Zbl 1414.62055
[20] Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, (1991) · Zbl 0780.53002
[21] Vinberg, E.B.:The theory of convex homogeneous cones, Translations Moscow Math. Soc., 340-403 (1963) · Zbl 0138.43301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.