×

Toeplitz operators for Stockwell transform related to the spherical mean operator. (English) Zbl 1523.44001

Summary: In this paper, we define and study the continuous Stockwell transform associated with the spherical mean operator, we prove Plancherel formula, inversion formula, etc. Next, some applications are given as the theory of localization operators associated with this new transform. Finally we give some results on the spectrograms for the continuous Stockwell transform.

MSC:

44A05 General integral transforms
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Abreu, LD; Gröchenig, K.; Romero, JL, On accumulated spectrograms, Trans. Am. Math. Soc., 368, 3629-3649 (2016) · Zbl 1333.81216 · doi:10.1090/tran/6517
[2] Andrews, G.; Askey, R.; Roy, R., Special Functions (1999), New York: Cambridge University Press, New York · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[3] Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L’Huillier, J., S-transform applied to laser doppler flowmetry reactive hyperemia signals, IEEE Trans. Biomed. Eng, 53, 1032-1037 (2006) · doi:10.1109/TBME.2005.863843
[4] Baccar, C.; Hamadi, N.; Herch, H., Time-frequency analysis of localization operators associated to the windowed Hankel transform, Integr. Transforms Spec. Funct., 27, 3, 245-258 (2016) · Zbl 1338.42010 · doi:10.1080/10652469.2015.1117078
[5] Balazs, P., Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process., 6, 2, 315-330 (2008) · Zbl 1268.42052 · doi:10.1142/S0219691308002379
[6] Boggiatto, P.; Wong, MW, Two-wavelet localization operators on \(L^p(\mathbb{R}^d)\) for the Weyl- Heisenberg group, Integr. Equ. Oper. Theory, 49, 1-10 (2004) · Zbl 1072.47046 · doi:10.1007/s00020-002-1200-1
[7] Boggiatto, P.; Fernández, C.; Galbis, A., A group representation related tothe Stockwell transform, Indiana Univ. Math. J., 58, 5, 2277-2296 (2009) · Zbl 1204.42033 · doi:10.1512/iumj.2009.58.3670
[8] Catana, V.: Schatten-von Neumann norm inequalities for two-wavelet localization operators. In: Partial Differential Equations and Time-Frequency Analysis, Pseudo-Differential Operators, pp. 265-277 (2007) · Zbl 1143.47032
[9] Catana, V., Two-wavelet localization operators on homogeneous spaces and their traces, Integr. Equ. Oper. Theory, 62, 351-363 (2008) · Zbl 1181.47051 · doi:10.1007/s00020-008-1624-3
[10] Dash, P., Panigrahi, B., Panda, G.: Power quality analysis using S-transform. IEEE Trans. Power Delivery 18, (2003)
[11] Daubechies, I., Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inf. Theory, 34, 4, 605-612 (1988) · Zbl 0672.42007 · doi:10.1109/18.9761
[12] Eramian, M., Schincariol, R., Mansinha, L., Stockwell, R.: Generation of aquifer heterogeneity maps using two-dimensional spectral texture segmentation techniques. Math. Geol. 31, (1999)
[13] Fawcett, JA, Inversion of N-dimensional spherical means, SIAM J. Appl. Math., 45, 336-341 (1985) · Zbl 0588.44006 · doi:10.1137/0145018
[14] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), New York: Springer Science and Business Media, New York · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[15] Guo, Q.; Molahajloo, S.; Wong, MW; Rodino, L.; Wong, MW, Modified Stockwell transforms and time-frequency analysis, New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 275-285 (2009), Basel: Birkhäuser, Basel · Zbl 1166.65399
[16] Helesten, H.; Anderson, LE, An inverse method for the processing of synthetic aperture radar data, Inverse Probl., 4, 111-124 (1987) · Zbl 0619.65132 · doi:10.1088/0266-5611/3/1/013
[17] Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw Data., Internal Report D 30430-3.2, National Defense Research Institute, FOA, Box 1165; S-581 11, Linköping, Sweden (1986)
[18] Hleili, K.; Slim, O., The Littlwood-Paley g-function associated with the spherical mean operator, Mediterr. J. Math, 10, 2, 887-907 (2013) · Zbl 1271.43002 · doi:10.1007/s00009-012-0229-x
[19] Hleili, K., Uncertainty principles for spherical mean \(L^2\)-multiplier operators, J. Pseudo-Differ. Oper. Appl., 9, 3, 573-587 (2018) · Zbl 1400.43001 · doi:10.1007/s11868-017-0197-9
[20] Hleili, K.: Calderon’s reproducing formulas for the Spherical mean \(L^2\)-multiplier operators. Le Matematiche 73(1), 41-58 (2018) · Zbl 1418.43003
[21] Hleili, K., Some results for the windowed Fourier transform related to the spherical mean operator, Acta Mathematica Vietnamica, 46, 1, 179-201 (2021) · Zbl 1467.42017 · doi:10.1007/s40306-020-00382-2
[22] Hleili, K.; Hleili, M., Time-frequency analysis of localization operators for the non-isotropic n-dimensional modified Stockwell transform, J. Pseudo-Differ. Oper. Appl., 12, 2, 1-22 (2021) · Zbl 1479.44002 · doi:10.1007/s11868-021-00408-9
[23] Hleili, K., Windowed linear canonical transform and its applications to the time-frequency analysis, J. Pseudo-Differ. Oper. Appl., 13, 2, 1-26 (2022) · Zbl 1502.42005 · doi:10.1007/s11868-022-00444-z
[24] Hleili, K., \(L^p\) uncertainty principles for the Windowed Spherical mean transform, Memoirs Differ. Equ. Math. Phys., 85, 75-90 (2022) · Zbl 1489.42005
[25] Jelassi, M.; Rachdi, LT, On the range of the Fourier transform associated with the spherical mean operator, Fract. Calc. Appl. Anal., 7, 4, 379-402 (2004) · Zbl 1197.43004
[26] Lebedev, NN, Special Functions and Their Applications (1972), New York: Dover Publications, New York · Zbl 0271.33001
[27] Liu, Y.; Mohamed, A., \(L^p(\mathbb{R})\) boundedness and compactness oflocalization operators associated with the Stockwell transform, Rend. Sem. Mat. Univ. Pol. Torino, 67, 2, 203-214 (2009) · Zbl 1204.42019
[28] Mejjaoli, H.; Trimèche, Kh, Boundedness and compactness of localization operators associated with the spherical mean wigner transform, Complex Anal. Oper. Theory., 13, 753-780 (2019) · Zbl 1426.33054 · doi:10.1007/s11785-018-0794-5
[29] Molahajloo, S.; Wong, MW, Square-integrable group representations and localization operators for modified Stockwell transforms, Rend. Sem. Mat. Univ. Pol. Torino, 67, 2, 215-227 (2009) · Zbl 1190.65205
[30] Nessibi, MM; Rachdi, LT; Trimèche, K., Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. Appl., 196, 3, 861-884 (1995) · Zbl 0845.43005 · doi:10.1006/jmaa.1995.1448
[31] Osler, J.; Chapman, D., Seismo-acoustic determination of the shear-wave speed of surficial clay and silt sediments on the Scotian shelf, Can. Acoust., 24, 11-22 (1996)
[32] Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the Spherical Mean Operator. Anal. Appl., \(1, N^\circ 2, 141-164 (2003)\) · Zbl 1045.47038
[33] Riesz, F., Sz.-Nagy, B.: Functional Analysis. Frederick Ungar Publishing Co., New York (1955)
[34] Schuster, T.: The method of approximate inverse: theory and applications, Lecture Notes in Math, Vol. 1906 (2007) · Zbl 1171.65001
[35] Stockwell, RG; Mansinha, L.; Lowe, RP, Localization of the complex spectrmn: the S-transform, IEEE Trans. Signal Process., 44, 998-1001 (1996) · doi:10.1109/78.492555
[36] Trimèche, K., Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur \((0,\infty )\), J. Math. Pures et Appl., 60, 51-98 (1981) · Zbl 0416.44002
[37] Trimèche, K., Inversion of the Lions translation operator using genaralized wavelets, Appl. Comput. Harmonic Anal., 4, 97-112 (1997) · Zbl 0872.34059 · doi:10.1006/acha.1996.0206
[38] Wang, L.V.: Photoacoustic imaging and spectroscopy, Optical science and engineering, Vol., 144, (2009)
[39] Wong, MW, Wavelet Transforms and Localization Operators (2002), Berlin: Springer, Berlin · Zbl 1016.42017 · doi:10.1007/978-3-0348-8217-0
[40] Wong, M.W.: Localization operators on the affine group and paracommutators. Progress in Analysis, World Scientific, pp. 663-669 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.