×

Weyl transforms associated with the spherical mean operator. (English) Zbl 1045.47038

Summary: Using the harmonic analysis associated with the spherical mean operator \(\mathcal R\), we define and study the Weyl transforms \(W_{\sigma}\) associated with \(\mathcal R\) where \(\sigma\) is a symbol in \(S^m\), \(m \in \mathbb R\), and we give criteria in terms of \(\sigma\) to obtain the boundedness and compactness of the transform \(W_{\sigma}\).

MSC:

47G10 Integral operators
43A32 Other transforms and operators of Fourier type
44A15 Special integral transforms (Legendre, Hilbert, etc.)
Full Text: DOI

References:

[1] DOI: 10.1137/0519016 · Zbl 0638.44004 · doi:10.1137/0519016
[2] DOI: 10.1137/0145018 · Zbl 0588.44006 · doi:10.1137/0145018
[3] Folland G. B., Real Analysis (Modern techniques and their applications) (1984) · Zbl 0549.28001
[4] Helesten H., Inverse Problems 4 pp 111–
[5] Lebedev N. N., Special Functions and Their Applications · Zbl 0271.33001 · doi:10.1063/1.3047047
[6] DOI: 10.1006/jmaa.1995.1448 · Zbl 0845.43005 · doi:10.1006/jmaa.1995.1448
[7] DOI: 10.1090/S0002-9947-1956-0082586-0 · doi:10.1090/S0002-9947-1956-0082586-0
[8] Stein E. M., Introduction to Fourier Analysis on Euclidean Spaces (1971) · Zbl 0232.42007
[9] Weyl H., The Theory of Groups and Quantum Mechanics (1950) · Zbl 0041.56804
[10] Watson G. N., A Treatise on the Theory of Bessel Functions (1966)
[11] Wong M. W., Weyl Transforms (1998) · Zbl 0908.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.