×

Dual Kashiwara functions for the \(B(\infty)\) crystal in the bipartite case. (English) Zbl 1523.17018

Greenstein, Jacob (ed.) et al., Interactions of quantum affine algebras with cluster algebras, current algebras and categorification. In honor of Vyjayanthi Chari on the occasion of her 60th birthday. Based on the summer school and the conference, Washington, DC, USA, June 2018. Cham: Birkhäuser. Prog. Math. 337, 277-322 (2021).
Summary: Let \(\mathfrak g\) be a simple algebra. Let \(r\) be the number of its positive roots. The Kashiwara \(B(\infty)\) crystal is an important combinatorial object that describes a crystal basis for the simple finite dimensional \(\mathfrak g\) modules. After [A. Berenstein and A. Zelevinsky, Invent. Math. 143, No. 1, 77–128 (2001; Zbl 1061.17006)], it is a polyhedral subset of the integer points of an \(r\)-dimensional affine space, and moreover, the linear functions describing this polyhedral subset are given by “trails” in the fundamental modules of lowest weight of the Langlands dual. In general, trails depend on a reduced decomposition of the longest element of the Weyl group and are very difficult to compute. In the present work, it is shown for \(\mathfrak g\) classical, when the reduced decomposition is given by a power of a suitably chosen Coxeter element, that the set of trails is in natural bijection with the crystal of a suitable highest weight fundamental module.
The proofs are based on a specially developed theory of \(S\)-sets and do not require any of the results in Berenstein-Zelevinsky (loc cit).
For the entire collection see [Zbl 1481.17001].

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
05E10 Combinatorial aspects of representation theory

Citations:

Zbl 1061.17006
Full Text: DOI

References:

[1] Berenstein, A.; Zelevinsky, A., Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 1, 77-128 (2001) · Zbl 1061.17006 · doi:10.1007/s002220000102
[2] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV-VI: (French) Actualités Scientifiques et Industrielles, No. 1337 Hermann, Paris 1968.
[3] O. Gleizer and A. Postnikov, Littlewood-Richardson coefficients via Yang-Baxter equation. Internat. Math. Res. Notices 2000, no. 14, 741-774. · Zbl 0987.20023
[4] Joseph, A., A decomposition theorem for Demazure crystals, J. Algebra, 265, 2, 562-578 (2003) · Zbl 1100.17009 · doi:10.1016/S0021-8693(03)00028-0
[5] A. Joseph, Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29. Springer-Verlag, Berlin,1995. · Zbl 0808.17004
[6] A. Joseph, Consequences of the Littelmann path theory for the structure of the Kashiwara B(∞) crystal. Highlights in Lie algebraic methods, 25-64, Progr. Math., 295, Birkäuser/Springer, New York, 2012. · Zbl 1250.17025
[7] Joseph, A., A Preparation Theorem for the Kashiwara B(∞) Crystal, Selecta Mathematica, 23, 2, 1309-1353 (2017) · Zbl 1418.17035 · doi:10.1007/s00029-017-0305-y
[8] Joseph, A., Convexity properties of the canonical S-graphs, Israel J. Math., 226, 2, 827-849 (2018) · Zbl 1393.05254 · doi:10.1007/s11856-018-1714-0
[9] A. Joseph, Trails, S-graphs and identities in Demazure modules, arXiv:1702.00243.
[10] A. Joseph, Dual Kashiwara functions for the B(∞) crystal. Lie Groups, Geometry, and Represention Theory, Progress in Mathematics 326, 201-233, Birkhauser, Boston, 2018 · Zbl 1459.17041
[11] A. Joseph, Trails for minuscule modules and dual Kashiwara functions for the B(∞) crystal. Quantum theory and symmetries with Lie theory and its applications in physics. Vol. 1, 37-53, Springer Proc. Math. Stat., 263, Springer, Singapore, 2018. · Zbl 1409.17012
[12] A. Joseph and P. Lamprou, A new interpretation of the Catalan numbers, arXiv:1512.00406. · Zbl 1400.05280
[13] V. G Kac, Infinite-dimensional Lie algebras. Second edition. Cambridge University Press, Cambridge, 1985. · Zbl 0574.17010
[14] Kashiwara, M., Global crystal bases of quantum groups, Duke Math. J., 69, 2, 455-485 (1993) · Zbl 0774.17018 · doi:10.1215/S0012-7094-93-06920-7
[15] Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71, 3, 839-858 (1993) · Zbl 0794.17008 · doi:10.1215/S0012-7094-93-07131-1
[16] Nakashima, T., Polytopes for crystallized Demazure modules and extremal vectors, Comm. Algebra, 30, 3, 1349-1367 (2002) · Zbl 0991.17018 · doi:10.1080/00927870209342385
[17] Nakashima, T.; Zelevinsky, A., Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math., 131, 1, 253-278 (1997) · Zbl 0897.17014 · doi:10.1006/aima.1997.1670
[18] Speyer, D. E., Powers of Coxeter elements in infinite groups are reduced, Proc. Amer. Math. Soc., 137, 4, 1295-1302 (2009) · Zbl 1187.20053 · doi:10.1090/S0002-9939-08-09638-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.