×

Powers of Coxeter elements in infinite groups are reduced. (English) Zbl 1187.20053

Summary: Let \(W\) be an infinite irreducible Coxeter group with \((s_1,\dots,s_n)\) the simple generators. We give a short proof that the word \(s_1s_2\cdots s_ns_1s_2\cdots s_n\cdots s_1s_2\cdots s_n\) is reduced for any number of repetitions of \(s_1s_2\cdots s_n\). This result was proved for simply laced, crystallographic groups by M. Kleiner and A. Pelley [Int. Math. Res. Not. 2007, No. 4, Article ID rnm013 (2007; Zbl 1135.16014)] using methods from the theory of quiver representations. Our proof uses only basic facts about Coxeter groups and the geometry of root systems. We also prove that, in finite Coxeter groups, there is a reduced word for \(w_0\) which is obtained from the semi-infinite word \(s_1s_2\cdots s_ns_1s_2\cdots s_n\cdots\) by interchanging commuting elements and taking a prefix.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20F05 Generators, relations, and presentations of groups
17B22 Root systems

Citations:

Zbl 1135.16014

References:

[1] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. · Zbl 1110.05001
[2] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112 – 164. · Zbl 1127.16023 · doi:10.1112/S0010437X06002521
[3] C. Hohlweg, C. Lange and H. Thomas, Permutahedra and Generalized Associahedra · Zbl 1233.20035
[4] Robert B. Howlett, Coxeter groups and \?-matrices, Bull. London Math. Soc. 14 (1982), no. 2, 137 – 141. · Zbl 0465.20029 · doi:10.1112/blms/14.2.137
[5] Mark Kleiner and Allen Pelley, Admissible sequences, preprojective representations of quivers, and reduced words in the Weyl group of a Kac-Moody algebra, Int. Math. Res. Not. IMRN 4 (2007), Art. ID rnm013, 28. · Zbl 1135.16014 · doi:10.1093/imrn/rnm013
[6] Mark Kleiner and Helene R. Tyler, Admissible sequences and the preprojective component of a quiver, Adv. Math. 192 (2005), no. 2, 376 – 402. · Zbl 1091.16008 · doi:10.1016/j.aim.2004.04.006
[7] Allen Knutson and Ezra Miller, Subword complexes in Coxeter groups, Adv. Math. 184 (2004), no. 1, 161 – 176. · Zbl 1069.20026 · doi:10.1016/S0001-8708(03)00142-7
[8] D. Krammer, The conjugacy problem for Coxeter groups, Ph.D. thesis, Universiteit Utrecht, 1994. Available at http://www.warwick.ac.uk/\( \sim\)masbal/ · Zbl 1176.20032
[9] Atsuo Kuniba, Kailash C. Misra, Masato Okado, Taichiro Takagi, and Jun Uchiyama, Crystals for Demazure modules of classical affine Lie algebras, J. Algebra 208 (1998), no. 1, 185 – 215. · Zbl 0974.17028 · doi:10.1006/jabr.1998.7503
[10] Nathan Reading, Cambrian lattices, Adv. Math. 205 (2006), no. 2, 313 – 353. · Zbl 1106.20033 · doi:10.1016/j.aim.2005.07.010
[11] Nathan Reading, Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), no. 3-4, 411 – 437. · Zbl 1184.20038 · doi:10.1007/s00012-007-2009-1
[12] N. Reading and D. Speyer, Cambrian Fans, JEMS to appear, arXiv:math.CO/0606201. · Zbl 1213.20038
[13] N. Reading and D. Speyer, Sortable elements in infinite Coxeter groups, arXiv:0803.2722. · Zbl 1231.20036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.