×

Relative arbitrage: sharp time horizons and motion by curvature. (English) Zbl 1522.91228

Summary: We characterize the minimal time horizon over which any equity market with \(d \geq 2\) stocks and sufficient intrinsic volatility admits relative arbitrage with respect to the market portfolio. If \(d \in \{ 2 , 3 \}\), the minimal time horizon can be computed explicitly, its value being zero if \(d = 2\) and \(\sqrt{3} / ( 2 \pi )\) if \(d = 3\). If \(d \geq 4\), the minimal time horizon can be characterized via the arrival time function of a geometric flow of the unit simplex in \(\mathbb{R}^d\) that we call the minimum curvature flow.
{© 2021 The Authors. Mathematical Finance published by Wiley Periodicals LLC}

MSC:

91G10 Portfolio theory
93E20 Optimal stochastic control

References:

[1] Ambrosio, L., & Soner, H. M. (1996). Level set approach to mean curvature flow in arbitrary codimension. Journal of Differential Geometry, 43(4), 693-737. ISSN 0022‐040X. http://projecteuclid.org/euclid.jdg/1214458529. · Zbl 0868.35046
[2] Banner, A., & Fernholz, D. (2008). Short‐term relative arbitrage in volatility‐stabilized markets. Annals of Finance, 4(4), 445-454. · Zbl 1233.91234
[3] Buckdahn, R., Cardaliaguet, P., & Quincampoix, M. (2001). A representation formula for the mean curvature motion. Siam Journal on Mathematical Analysis, 33(4), 827-846. ISSN 0036‐1410. https://doi.org/10.1137/S0036141000380334. · Zbl 1074.93037 · doi:10.1137/S0036141000380334
[4] Chen, Y. G., Giga, Y., & Goto, S. (1991). Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Journal of Differential Geometry, 33(3), 749-786. ISSN 0022‐040X. http://projecteuclid.org/euclid.jdg/1214446564. · Zbl 0696.35087
[5] Colding, T. H., & Minicozzi, II, W. P. (2016). Differentiability of the arrival time. Communications on Pure and Applied Mathematics, 69(12), 2349-2363. ISSN 0010‐3640. https://doi.org/10.1002/cpa.21635. · Zbl 1353.53068 · doi:10.1002/cpa.21635
[6] Delbaen, F., & Schachermayer, W. (1995). The existence of absolutely continuous local martingale measures. The Annals of Applied Probability, 5(4), 926-945. ISSN 1050‐5164. http://links.jstor.org/sici?sici=1050‐5164(199511)5:4 · Zbl 0847.90013
[7] Evans, L. C., & Spruck, J. (1991). Motion of level sets by mean curvature. I. Journal of Differential Geometry, 33(3), 635-681. ISSN 0022‐040X. http://projecteuclid.org/euclid.jdg/1214446559. · Zbl 0726.53029
[8] Evans, L. C., & Spruck, J. (1992). Motion of level sets by mean curvature. III. The Journal of Geometric Analysis, 2(2), 121-150. ISSN 1050‐6926. https://doi.org/10.1007/BF02921385. · Zbl 0768.53003 · doi:10.1007/BF02921385
[9] Fernholz, E. R. (2002). Stochastic Portfolio Theory, volume 48 of Applications of Mathematics (New York). New York: Springer‐Verlag. ISBN 0‐387‐95405‐8. https://doi.org/10.1007/978‐1‐4757‐3699‐1. Stochastic Modelling and Applied Probability. · Zbl 1049.91067 · doi:10.1007/978‐1‐4757‐3699‐1
[10] Fernholz, R., & Karatzas, I. (2005). Relative arbitrage in volatility‐stabilized markets. Annals of Finance, 1(2), 149-177. · Zbl 1233.91244
[11] Fernholz, D., & Karatzas, I. (2010). On optimal arbitrage. The Annals of Applied Probability, 20(4), 1179-1204. ISSN 1050‐5164. https://doi.org/10.1214/09‐AAP642. · Zbl 1206.60055 · doi:10.1214/09‐AAP642
[12] Fernholz, E. R., Karatzas, I., & Ruf, J. (2018). Volatility and arbitrage. The Annals of Applied Probability, 28(1), 378-417. ISSN 1050‐5164. https://doi.org/10.1214/17‐AAP1308. · Zbl 1391.60093 · doi:10.1214/17‐AAP1308
[13] Fernholz, R., & Karatzas, I. (2009). Stochastic Portfolio Theory: an overview. In A.Bensoussan (ed.) (Ed.), Handbook of Numerical Analysis, volume Mathematical Modeling and Numerical Methods in Finance. Elsevier. · Zbl 1162.65002
[14] Fernholz, R., Karatzas, I., & Kardaras, C. (2005). Diversity and relative arbitrage in equity markets. Finance and Stochastics, 9(1), 1-27. · Zbl 1064.60132
[15] Gage, M. E. (1984). Curve shortening makes convex curves circular. Inventiones Mathmaticae, 76(2), 357-364. ISSN 0020‐9910. https://doi.org/10.1007/BF01388602. · Zbl 0542.53004 · doi:10.1007/BF01388602
[16] Gage, M., & Hamilton, R. S. (1986). The heat equation shrinking convex plane curves. Journal of Differential Geometry, 23(1), 69-96. ISSN 0022‐040X. http://projecteuclid.org/euclid.jdg/1214439902. · Zbl 0621.53001
[17] Huisken, G. (1993). Local and global behaviour of hypersurfaces moving by mean curvature. In Differential geometry: Partial differential equations on manifolds (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math. (pp. 175-191). Providence, RI: Amer. Math. Soc. https://doi.org/10.1090/pspum/054.1/1216584. · Zbl 0791.58090 · doi:10.1090/pspum/054.1/1216584
[18] Karatzas, I., & Ruf, J. (2017). Trading strategies generated by Lyapunov functions. Finance and Stochastics, 21(3), 753-787. · Zbl 1414.91343
[19] Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics (2nd ed.). New York: Springer‐Verlag. ISBN 0‐387‐97655‐8. https://doi.org/10.1007/978‐1‐4612‐0949‐2. · Zbl 0734.60060 · doi:10.1007/978‐1‐4612‐0949‐2
[20] Kohn, R. V., & Serfaty, S. (2006). A deterministic‐control‐based approach to motion by curvature. Communications on Pure and Applied Mathematics, 59(3), 344-407. ISSN 0010‐3640. https://doi.org/10.1002/cpa.20101. · Zbl 1206.53072 · doi:10.1002/cpa.20101
[21] Larsson, M., & Ruf, J. (2020). Minimum, curvature flow and martingale exit times. Preprint, arXiv:2003.13611.
[22] Pal, S. (2019). Exponentially concave functions and high dimensional stochastic portfolio theory. Stochastic Processes and Their Applications, 129(9), 3116-3128. ISSN 0304‐4149. https://doi.org/10.1016/j.spa.2018.09.004. · Zbl 1422.91665 · doi:10.1016/j.spa.2018.09.004
[23] Pal, S., & Wong, T.‐K. L. (2018). Exponentially concave functions and a new information geometry. The Annals of Probability, 46(2), 1070-1113. ISSN 0091‐1798. https://doi.org/10.1214/17‐AOP1201. · Zbl 1390.60064 · doi:10.1214/17‐AOP1201
[24] Revuz, D., & Yor, M. (1999). Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (3rd ed.). Berlin: Springer‐Verlag. ISBN 3‐540‐64325‐7. https://doi.org/10.1007/978‐3‐662‐06400‐9. · Zbl 0917.60006 · doi:10.1007/978‐3‐662‐06400‐9
[25] Soner, H. M., & Touzi, N. (2002a). Dynamic programming for stochastic target problems and geometric flows. Journal of the European Mathematical Society, 4(3), 201-236. ISSN 1435‐9855. https://doi.org/10.1007/s100970100039. · Zbl 1003.49003 · doi:10.1007/s100970100039
[26] Soner, H. M., & Touzi, N. (2002b). A stochastic representation for the level set equations. Communications in Partial Differential Equations, 27(9‐10), 2031-2053. ISSN 0360‐5302. https://doi.org/10.1081/PDE‐120016135. · Zbl 1036.49010 · doi:10.1081/PDE‐120016135
[27] Soner, H. M., & Touzi, N. (2003). A stochastic representation for mean curvature type geometric flows. The Annals of Probability, 31(3), 1145-1165. ISSN 0091‐1798. https://doi.org/10.1214/aop/1055425773. · Zbl 1080.60076 · doi:10.1214/aop/1055425773
[28] Vervuurt, A. (2015). Topics in stochastic portfolio theory. Preprint, arXiv::1504.02988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.