×

A stochastic representation for the level set equations. (English) Zbl 1036.49010

Summary: A Feynman-Kac representation is proved for geometric partial differential equations. This representation is in terms of a stochastic target problem. In this problem the controller tries to steer a controlled process into a given target by judicious choices of controls. The sublevel sets of the unique level set solution of the geometric equation are shown to coincide with the reachability sets of the target problem whose target is the sublevel set of the final data.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
60J60 Diffusion processes
49L20 Dynamic programming in optimal control and differential games
35K55 Nonlinear parabolic equations
35R60 PDEs with randomness, stochastic partial differential equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
Full Text: DOI

References:

[1] Ambrosio L., Journal of Differential Geometry 43 pp 693– (1996)
[2] DOI: 10.1137/0331021 · Zbl 0785.35049 · doi:10.1137/0331021
[3] Bouchard B., Stochastic Processes and Their Applications (2000)
[4] Buckdahn R., SIAM J. Math. Analysis 33 pp 827– (2002) · Zbl 1074.93037 · doi:10.1137/S0036141000380334
[5] Brakke K., The Motion of a Set By Its Mean Curvature (1978) · Zbl 0386.53047
[6] Chen Y.-G., Journal of Differential Geometry 33 pp 749– (1991)
[7] DOI: 10.1090/S0273-0979-1992-00266-5 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[8] DOI: 10.1214/aop/1022855872 · Zbl 0935.60039 · doi:10.1214/aop/1022855872
[9] Evans L.C., Journal of Differential Geometry 33 pp 635– (1991)
[10] ElKaroui N., Stochastics 20 pp 169– (1986)
[11] Fleming W.H., Controlled Markov Processes and Viscosity Solutions (1993) · Zbl 0773.60070
[12] DOI: 10.1512/iumj.1992.41.41036 · Zbl 0759.53035 · doi:10.1512/iumj.1992.41.41036
[13] Karatzas I., Methods of Mathematical Finance (1998) · Zbl 0941.91032 · doi:10.1007/b98840
[14] Haussmann, U.G. Existence of Optimal Markovian Controls for Degenerate Diffusions. Proceedings of The Third Bad-Honnef Conference. Lecture Notes in Control and Information Sciences, Springer-Verlag> · Zbl 0593.93068
[15] DOI: 10.1155/S1073792897000664 · Zbl 0905.53043 · doi:10.1155/S1073792897000664
[16] Ma J., Lecture Notes in Mathematics 1702 (1999)
[17] DOI: 10.1103/PhysRevLett.49.1223 · doi:10.1103/PhysRevLett.49.1223
[18] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[19] DOI: 10.1006/jdeq.1993.1015 · Zbl 0769.35070 · doi:10.1006/jdeq.1993.1015
[20] DOI: 10.1137/S0363012998348991 · Zbl 0960.91036 · doi:10.1137/S0363012998348991
[21] DOI: 10.1137/S0363012900378863 · Zbl 1011.49019 · doi:10.1137/S0363012900378863
[22] DOI: 10.1007/s100970100039 · Zbl 1003.49003 · doi:10.1007/s100970100039
[23] Soner H.M., Annals of Probability (2002)
[24] DOI: 10.1016/S0304-4149(00)00007-7 · Zbl 1048.91072 · doi:10.1016/S0304-4149(00)00007-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.