×

Black tsunamis and naked singularities in AdS. (English) Zbl 1522.83167

Summary: We study the evolution of the Gregory-Laflamme instability for black strings in global AdS spacetime, and investigate the CFT dual of the formation of a bulk naked singularity. Using an effective theory in the large \(D\) limit, we uncover a rich variety of dynamical behaviour, depending on the thickness of the string and on initial perturbations. These include: large inflows of horizon generators from the asymptotic boundary (a ‘black tsunami’); a pinch-off of the horizon that likely reveals a naked singularity; and competition between these two behaviours, such as a nakedly singular pinch-off that subsequently gets covered by a black tsunami. The holographic dual describes different patterns of heat flow due to the Hawking radiation of two black holes placed at the antipodes of a spherical universe. We also present a model that describes, in any \(D\), the burst in the holographic stress-energy tensor when the signal from a bulk self-similar naked singularity reaches the boundary. The model shows that the shear components of the boundary stress diverge in finite time, while the energy density and pressures from the burst vanish.

MSC:

83C57 Black holes
83E05 Geometrodynamics and the holographic principle
83E30 String and superstring theories in gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Gregory, R.; Laflamme, R., Black strings and p-branes are unstable, Phys. Rev. Lett., 70, 2837 (1993) · Zbl 1051.83544 · doi:10.1103/PhysRevLett.70.2837
[2] Gregory, R.; Laflamme, R., The instability of charged black strings and p-branes, Nucl. Phys. B, 428, 399 (1994) · Zbl 1037.83509 · doi:10.1016/0550-3213(94)90206-2
[3] L. Lehner and F. Pretorius, Black strings, low viscosity fluids, and violation of cosmic censorship, Phys. Rev. Lett.105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].
[4] T. Hirayama and G. Kang, Stable black strings in anti-de Sitter space, Phys. Rev. D64 (2001) 064010 [hep-th/0104213] [INSPIRE].
[5] Gregory, R., Black string instabilities in anti-de Sitter space, Class. Quant. Grav., 17, L125 (2000) · Zbl 0972.83068 · doi:10.1088/0264-9381/17/18/103
[6] Emparan, R.; Luna, R.; Martínez, M.; Suzuki, R.; Tanabe, K., Phases and stability of non-uniform black strings, JHEP, 05, 104 (2018) · Zbl 1391.83057 · doi:10.1007/JHEP05(2018)104
[7] D. Marolf, M. Rangamani and T. Wiseman, Holographic thermal field theory on curved spacetimes, Class. Quant. Grav.31 (2014) 063001 [arXiv:1312.0612] [INSPIRE]. · Zbl 1292.83002
[8] G.T. Horowitz and T. Wiseman, General black holes in Kaluza-Klein theory, in Black holes in higher dimensions, G.T. Horowitz ed., (2012), pg. 69 [arXiv:1107.5563] [INSPIRE]. · Zbl 1259.83004
[9] W. Bunting, Z. Fu and D. Marolf, A coarse-grained generalized second law for holographic conformal field theories, Class. Quant. Grav.33 (2016) 055008 [arXiv:1509.00074] [INSPIRE]. · Zbl 1338.83099
[10] Marolf, D.; Santos, JE, Phases of holographic Hawking radiation on spatially compact spacetimes, JHEP, 10, 250 (2019) · Zbl 1427.83044 · doi:10.1007/JHEP10(2019)250
[11] Gregory, R.; Ross, SF; Zegers, R., Classical and quantum gravity of brane black holes, JHEP, 09, 029 (2008) · Zbl 1245.83013 · doi:10.1088/1126-6708/2008/09/029
[12] S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys.87 (1983) 577 [INSPIRE].
[13] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[14] R. Emparan, R. Suzuki and K. Tanabe, Evolution and end point of the black string instability: large D solution, Phys. Rev. Lett.115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].
[15] Emparan, R.; Izumi, K.; Luna, R.; Suzuki, R.; Tanabe, K., Hydro-elastic complementarity in black branes at large D, JHEP, 06, 117 (2016) · doi:10.1007/JHEP06(2016)117
[16] Dandekar, Y.; Mazumdar, S.; Minwalla, S.; Saha, A., Unstable ‘black branes’ from scaled membranes at large D, JHEP, 12, 140 (2016) · Zbl 1390.83188 · doi:10.1007/JHEP12(2016)140
[17] R. Emparan and C.P. Herzog, Large D limit of Einstein’s equations, Rev. Mod. Phys.92 (2020) 045005 [arXiv:2003.11394] [INSPIRE].
[18] P.M. Chesler and B. Way, Holographic signatures of critical collapse, Phys. Rev. Lett.122 (2019) 231101 [arXiv:1902.07218] [INSPIRE].
[19] T. Andrade, O.J.C. Dias, J.E. Santos and B. Way, in progress.
[20] Andrade, T.; Emparan, R.; Licht, D.; Luna, R., Cosmic censorship violation in black hole collisions in higher dimensions, JHEP, 04, 121 (2019) · Zbl 1415.83033 · doi:10.1007/JHEP04(2019)121
[21] Andrade, T.; Emparan, R.; Licht, D.; Luna, R., Black hole collisions, instabilities, and cosmic censorship violation at large D, JHEP, 09, 099 (2019) · Zbl 1423.83039 · doi:10.1007/JHEP09(2019)099
[22] Andrade, T.; Emparan, R.; Jansen, A.; Licht, D.; Luna, R.; Suzuki, R., Entropy production and entropic attractors in black hole fusion and fission, JHEP, 08, 098 (2020) · doi:10.1007/JHEP08(2020)098
[23] D. Licht, R. Suzuki and B. Way, Large D effective theory of AdS black strings, to appear.
[24] Andrade, T.; Emparan, R.; Licht, D., Rotating black holes and black bars at large D, JHEP, 09, 107 (2018) · Zbl 1398.83036 · doi:10.1007/JHEP09(2018)107
[25] Emparan, R., Predictivity lost, predictivity regained: a Miltonian cosmic censorship conjecture, Int. J. Mod. Phys. D, 29, 2043021 (2020) · doi:10.1142/S021827182043021X
[26] T. Andrade, P. Figueras and U. Sperhake, Evidence for violations of weak cosmic censorship in black hole collisions in higher dimensions, arXiv:2011.03049 [INSPIRE].
[27] Bhattacharyya, S., Currents and radiation from the large D black hole membrane, JHEP, 05, 098 (2017) · Zbl 1380.83123 · doi:10.1007/JHEP05(2017)098
[28] P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End point of the ultraspinning instability and violation of cosmic censorship, Phys. Rev. Lett.118 (2017) 151103 [arXiv:1702.01755] [INSPIRE].
[29] V. Cardoso and O.J.C. Dias, Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings, Phys. Rev. Lett.96 (2006) 181601 [hep-th/0602017] [INSPIRE].
[30] Eggers, J., Theory of drop formation, Phys. Fluids, 7, 941 (1995) · Zbl 1023.76523 · doi:10.1063/1.868570
[31] M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett.70 (1993) 9 [INSPIRE].
[32] C. Gundlach, Understanding critical collapse of a scalar field, Phys. Rev. D55 (1997) 695 [gr-qc/9604019] [INSPIRE].
[33] Ishibashi, A.; Kodama, H., Stability of higher dimensional Schwarzschild black holes, Prog. Theor. Phys., 110, 901 (2003) · Zbl 1053.83015 · doi:10.1143/PTP.110.901
[34] Kodama, H.; Ishibashi, A., A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys., 110, 701 (2003) · Zbl 1050.83016 · doi:10.1143/PTP.110.701
[35] A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav.21 (2004) 2981 [hep-th/0402184] [INSPIRE]. · Zbl 1064.83006
[36] Hanada, M.; Romatschke, P., Real time quantum gravity dynamics from classical statistical Yang-Mills simulations, JHEP, 01, 201 (2019) · Zbl 1409.83065 · doi:10.1007/JHEP01(2019)201
[37] Friess, JJ; Gubser, SS; Michalogiorgakis, G.; Pufu, SS, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP, 04, 080 (2007) · doi:10.1088/1126-6708/2007/04/080
[38] de Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595 (2001) · Zbl 0984.83043 · doi:10.1007/s002200100381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.