×

Cosmic censorship violation in black hole collisions in higher dimensions. (English) Zbl 1415.83033

Summary: We argue that cosmic censorship is violated in the collision of two black holes in high spacetime dimension \(D\) when the initial total angular momentum is sufficiently large. The two black holes merge and form an unstable bar-like horizon, which grows a neck in its middle that pinches down with diverging curvature. When \(D\) is large, the emission of gravitational radiation is strongly suppressed and cannot spin down the system to a stable rotating black hole before the neck grows. The phenomenon is demonstrated using simple numerical simulations of the effective theory in the \( 1/D \) expansion. We propose that, even though cosmic censorship is violated, the loss of predictability is small independently of \(D\).

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
83E15 Kaluza-Klein and other higher-dimensional theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C10 Equations of motion in general relativity and gravitational theory
83C35 Gravitational waves

References:

[1] R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE]. · Zbl 1001.83040
[2] M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett.70 (1993) 9 [INSPIRE]. · doi:10.1103/PhysRevLett.70.9
[3] L. Lehner and F. Pretorius, Black strings, low viscosity fluids and violation of cosmic censorship, Phys. Rev. Lett.105 (2010) 101102 [arXiv:1006.5960] [INSPIRE]. · doi:10.1103/PhysRevLett.105.101102
[4] P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End point of the ultraspinning instability and violation of cosmic censorship, Phys. Rev. Lett.118 (2017) 151103 [arXiv:1702.01755] [INSPIRE]. · doi:10.1103/PhysRevLett.118.151103
[5] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE]. · Zbl 1051.83544 · doi:10.1103/PhysRevLett.70.2837
[6] T. Andrade, R. Emparan and D. Licht, Rotating black holes and black bars at large D, JHEP09 (2018) 107 [arXiv:1807.01131] [INSPIRE]. · Zbl 1398.83036 · doi:10.1007/JHEP09(2018)107
[7] V. Cardoso, O.J.C. Dias and J.P.S. Lemos, Gravitational radiation in D-dimensional space-times, Phys. Rev.D 67 (2003) 064026 [hep-th/0212168] [INSPIRE].
[8] R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP06 (2013) 009 [arXiv:1302.6382] [INSPIRE]. · Zbl 1342.83152 · doi:10.1007/JHEP06(2013)009
[9] R. Emparan et al., Phases and stability of non-uniform black strings, JHEP05 (2018) 104 [arXiv:1802.08191] [INSPIRE]. · Zbl 1391.83057 · doi:10.1007/JHEP05(2018)104
[10] T. Andrade, R. Emparan, D. Licht and R. Luna, Cosmic censorship and black hole collisions in the large D effective theory, to appear. · Zbl 1423.83039
[11] R. Emparan, R. Suzuki and K. Tanabe, Evolution and end point of the black string instability: large D solution, Phys. Rev. Lett.115 (2015) 091102 [arXiv:1506.06772] [INSPIRE]. · doi:10.1103/PhysRevLett.115.091102
[12] R. Emparan et al., Hydro-elastic complementarity in black branes at large D, JHEP06 (2016) 117 [arXiv:1602.05752] [INSPIRE]. · doi:10.1007/JHEP06(2016)117
[13] R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev.D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].
[14] R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP07 (2014) 113 [arXiv:1406.1258] [INSPIRE]. · Zbl 1390.83194 · doi:10.1007/JHEP07(2014)113
[15] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, Julia — A fresh approach to numerical computing, SIAM Rev.59 (2017) 65, https://docs.julialang.org/. · Zbl 1356.68030
[16] C. Rackauckas and Q. Nie, DifferentialEquations.jl — A performant and feature-rich ecosystem for solving differential equations in Julia, JORS5 (2017) 15.
[17] E. Sorkin, A critical dimension in the black string phase transition, Phys. Rev. Lett.93 (2004) 031601 [hep-th/0402216] [INSPIRE]. · doi:10.1103/PhysRevLett.93.031601
[18] O.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav.31 (2014) 245011 [arXiv:1402.7047] [INSPIRE]. · Zbl 1307.83029 · doi:10.1088/0264-9381/31/24/245011
[19] M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev.D 81 (2010) 021501 [arXiv:0912.3606] [INSPIRE].
[20] M. Shibata and H. Yoshino, Bar-mode instability of rapidly spinning black hole in higher dimensions: Numerical simulation in general relativity, Phys. Rev.D 81 (2010) 104035 [arXiv:1004.4970] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.