×

Rigorous bounds on light-by-light scattering. (English) Zbl 1522.81691

Summary: We bound EFT coefficients appearing in \(2\rightarrow2\) photon scattering amplitudes in four dimensions. After reviewing unitarity and positivity conditions in this context, we use dispersion relations and crossing symmetry to compute sum rules and null constraints. This allows us to derive new rigorous bounds on operators with four, six, and eight derivatives, including two-sided bounds on their ratios. Comparing with a number of partial UV completions, we find that some of our bounds are saturated by the amplitudes that arise from integrating out a massive scalar or axion, while others suggest the existence of unknown amplitudes.

MSC:

81U20 \(S\)-matrix theory, etc. in quantum theory
81T12 Effective quantum field theories
81U05 \(2\)-body potential quantum scattering theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T10 Model quantum field theories

Software:

SDPB

References:

[1] T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE].
[2] B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion-pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE].
[3] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006) · doi:10.1088/1126-6708/2006/10/014
[4] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[5] Tolley, AJ; Wang, Z-Y; Zhou, S-Y, New positivity bounds from full crossing symmetry, JHEP, 05, 255 (2021) · doi:10.1007/JHEP05(2021)255
[6] B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scattering amplitudes, Phys. Rev. D104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].
[7] Caron-Huot, S.; Van Duong, V., Extremal Effective Field Theories, JHEP, 05, 280 (2021) · doi:10.1007/JHEP05(2021)280
[8] A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].
[9] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE]. · Zbl 1383.81251
[10] Paulos, MF; Penedones, J.; Toledo, J.; van Rees, BC; Vieira, P., The S-matrix bootstrap II: two dimensional amplitudes, JHEP, 11, 143 (2017) · Zbl 1383.81331 · doi:10.1007/JHEP11(2017)143
[11] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part III: higher dimensional amplitudes, JHEP12 (2019) 040 [arXiv:1708.06765] [INSPIRE]. · Zbl 1431.81162
[12] Guerrieri, AL; Penedones, J.; Vieira, P., S-matrix bootstrap for effective field theories: massless pions, JHEP, 06, 088 (2021) · doi:10.1007/JHEP06(2021)088
[13] A. Guerrieri, J. Penedones and P. Vieira, Where Is String Theory in the Space of Scattering Amplitudes?, Phys. Rev. Lett.127 (2021) 081601 [arXiv:2102.02847] [INSPIRE]. · Zbl 07716770
[14] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[15] H. Euler, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Annalen Phys.26 (1936) 398 [INSPIRE]. · JFM 62.1634.03
[16] H. Euler and B. Kockel, The scattering of light by light in Dirac’s theory, Naturwiss.23 (1935) 246 [INSPIRE]. · Zbl 0011.14106
[17] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys.98 (1936) 714 [physics/0605038] [INSPIRE]. · JFM 62.1002.03
[18] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664 [INSPIRE] (1951) · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[19] G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in From fields to strings: Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set), M. Shifman, A. Vainshtein and J. Wheater eds., pp. 445-522 (2004) [DOI] [hep-th/0406216] [INSPIRE].
[20] G. Jikia and A. Tkabladze, Photon-photon scattering at the photon linear collider, Phys. Lett. B323 (1994) 453 [hep-ph/9312228] [INSPIRE].
[21] G.J. Gounaris, P.I. Porfyriadis and F.M. Renard, Light by light scattering at high-energy: A Tool to reveal new particles, Phys. Lett. B452 (1999) 76 [Erratum ibid.513 (2001) 431] [Erratum ibid.464 (1999) 350] [hep-ph/9812378] [INSPIRE].
[22] Z. Bern, A. De Freitas, L.J. Dixon, A. Ghinculov and H.L. Wong, QCD and QED corrections to light by light scattering, JHEP11 (2001) 031 [hep-ph/0109079] [INSPIRE].
[23] Ejlli, A., The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence, Phys. Rept., 871, 1 (2020) · Zbl 1489.78002 · doi:10.1016/j.physrep.2020.06.001
[24] V. Costantini, B. De Tollis and G. Pistoni, Nonlinear effects in quantum electrodynamics, Nuovo Cim. A2 (1971) 733 [INSPIRE].
[25] S.M. Roy, Exact integral equation for pion-pion scattering involving only physical region partial waves, Phys. Lett. B36 (1971) 353 [INSPIRE].
[26] G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B603 (2001) 125 [hep-ph/0103088] [INSPIRE]. · Zbl 0972.81673
[27] I. Caprini, G. Colangelo, J. Gasser and H. Leutwyler, On the precision of the theoretical predictions for ππ scattering, Phys. Rev. D68 (2003) 074006 [hep-ph/0306122] [INSPIRE].
[28] A.V. Manohar and V. Mateu, Dispersion Relation Bounds for ππ Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
[29] Cheung, C.; Remmen, GN, Infrared Consistency and the Weak Gravity Conjecture, JHEP, 12, 087 (2014) · doi:10.1007/JHEP12(2014)087
[30] J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
[31] Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P., Dispersive approach to hadronic light-by-light scattering, JHEP, 09, 091 (2014) · doi:10.1007/JHEP09(2014)091
[32] Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P., Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP, 09, 074 (2015) · Zbl 1388.81508 · doi:10.1007/JHEP09(2015)074
[33] Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P., Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP, 04, 161 (2017) · doi:10.1007/JHEP04(2017)161
[34] B. Bellazzini, Softness, Amplitudes’ positivity & EFT for Spinning Particles, talk given at Utrecht joint Cosmoslogy and Holography meeting.
[35] A. Falkowski, Saclay lectures on effective field theories, Lecture notes for Saclay 2017, https://indico.in2p3.fr/event/22195/contributions/86017/attachments/59873/81148/eftlectures.pdf.
[36] B. Bellazzini, M. Lewandowski and J. Serra, Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity, Phys. Rev. Lett.123 (2019) 251103 [arXiv:1902.03250] [INSPIRE].
[37] Caron-Huot, S.; Mazac, D.; Rastelli, L.; Simmons-Duffin, D., Sharp boundaries for the swampland, JHEP, 07, 110 (2021) · Zbl 1468.83031 · doi:10.1007/JHEP07(2021)110
[38] Hebbar, A.; Karateev, D.; Penedones, J., Spinning S-matrix bootstrap in 4d, JHEP, 01, 060 (2022) · Zbl 1521.81420 · doi:10.1007/JHEP01(2022)060
[39] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, UV complete me: Positivity Bounds for Particles with Spin, JHEP, 03, 011 (2018) · Zbl 1388.81262 · doi:10.1007/JHEP03(2018)011
[40] M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys.7 (1959) 404 [INSPIRE]. · Zbl 0178.28304
[41] Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A54 (2021) 344002 [arXiv:2103.12728] [INSPIRE]. · Zbl 1519.81389
[42] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].
[43] A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim. A42 (1965) 930 [INSPIRE]. · Zbl 0139.23204
[44] Simmons-Duffin, D., A Semidefinite Program Solver for the Conformal Bootstrap, JHEP, 06, 174 (2015) · doi:10.1007/JHEP06(2015)174
[45] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program solver SDPB, arXiv:1909.09745 [INSPIRE].
[46] L.D. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk SSSR60 (1948) 207 [INSPIRE].
[47] C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev.77 (1950) 242 [INSPIRE]. · Zbl 0035.13602
[48] de Rham, C., Massive Gravity, Living Rev. Rel., 17, 7 (2014) · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[49] R. Karplus and M. Neuman, The scattering of light by light, Phys. Rev.83 (1951) 776 [INSPIRE]. · Zbl 0043.42407
[50] Weisskopf, V., Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons, Kong. Dan. Vid. Sel. Mat. Fys. Med., 14, 6, 1 (1936) · JFM 62.1002.02
[51] Y.M. Zhi and Z.X. Jian, Photon-photon scattering via W-boson loops and charged scalar meson loops, BIHEP-TH-94-13 (1994) [INSPIRE].
[52] V.S. Vanyashin and M.V. Terentev, The Vacuum Polarization of a Charged Vector Field, Zh. Eksp. Teor. Fiz.48 (1965) 565 [INSPIRE].
[53] F. Přeučil and J. Hořejší, Effective Euler-Heisenberg Lagrangians in models of QED, J. Phys. G45 (2018) 085005 [arXiv:1707.08106] [INSPIRE].
[54] V.I. Ritus, The Lagrange Function of an Intensive Electromagnetic Field and Quantum Electrodynamics at Small Distances, Sov. Phys. JETP42 (1975) 774 [INSPIRE].
[55] V.I. Ritus, Effective Lagrange function of intense electromagnetic field in QED, in Workshop on Frontier Tests of Quantum Electrodynamics and Physics of the Vacuum, pp. 11-28 (1998) [hep-th/9812124] [INSPIRE].
[56] Ritus, VI, On the relation between the quantum electrodynamics of an intense field and the quantum electrodynamics at small distances, Sov. Phys. JETP, 46, 423 (1977)
[57] Y. Hamada, T. Noumi and G. Shiu, Weak Gravity Conjecture from Unitarity and Causality, Phys. Rev. Lett.123 (2019) 051601 [arXiv:1810.03637] [INSPIRE].
[58] Cheung, C.; Liu, J.; Remmen, GN, Proof of the Weak Gravity Conjecture from Black Hole Entropy, JHEP, 10, 004 (2018) · Zbl 1402.83054 · doi:10.1007/JHEP10(2018)004
[59] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The String landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[60] Kats, Y.; Motl, L.; Padi, M., Higher-order corrections to mass-charge relation of extremal black holes, JHEP, 12, 068 (2007) · Zbl 1246.83122 · doi:10.1088/1126-6708/2007/12/068
[61] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D102 (2020) 125023 [arXiv:2007.12667] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.