×

What is the magnetic Weak Gravity Conjecture for axions? (English) Zbl 1371.83204

Summary: The electric Weak Gravity Conjecture demands that axions with large decay constant \(f\) couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-\(f\) strings curve space too much to exist as static solutions, thus ruling out large-\(f\) axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-\(f\) axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-\(f\) (non-periodic) pseudo-axions.

MSC:

83F05 Relativistic cosmology
81V22 Unified quantum theories
81V17 Gravitational interaction in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
83C22 Einstein-Maxwell equations

Keywords:

inflation

References:

[1] N.Arkani‐Hamed, L.Motl, A.Nicolis, and C.Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06, 060 (2007), [hep‐th/0601001].
[2] C.Vafa, The String landscape and the swampland, hep‐th/0509212.
[3] H.Ooguri and C.Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.B766, 21-33 (2007), [hep‐th/0605264]. · Zbl 1117.81117
[4] C.Cheung and G. N.Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett.113, 051601 (2014), [1402.2287].
[5] J.Brown, W.Cottrell, G.Shiu, and P.Soler, Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation, JHEP10, 023 (2015), [1503.04783]. · Zbl 1388.83091
[6] B.Heidenreich, M.Reece, and T.Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP02, 140 (2016), [1509.06374]. · Zbl 1388.83119
[7] T.Rudelius, On the Possibility of Large Axion Moduli Spaces, JCAP1504, 049 (2015), [1409.5793].
[8] A. de laFuente, P.Saraswat, and R.Sundrum, Natural Inflation and Quantum Gravity, Phys. Rev. Lett.114, 151303 (2015), [1412.3457].
[9] T.Rudelius, Constraints on Axion Inflation from the Weak Gravity Conjecture, JCAP1509, 020 (2015), [1503.00795].
[10] M.Montero, A. M.Uranga, and I.Valenzuela, Transplanckian axions!?, JHEP08, 032 (2015), [1503.03886]. · Zbl 1387.83088
[11] T. C.Bachlechner, C.Long, and L.McAllister, Planckian Axions and the Weak Gravity Conjecture, JHEP01, 091 (2016), [1503.07853]. · Zbl 1388.83632
[12] A.Hebecker, P.Mangat, F.Rompineve, and L. T.Witkowski, Winding out of the Swamp: Evading the Weak Gravity Conjecture with F‐term Winding Inflation?, Phys. Lett.B748, 455-462 (2015), [1503.07912]. · Zbl 1345.83049
[13] J.Brown, W.Cottrell, G.Shiu, and P.Soler, On Axionic Field Ranges, Loopholes and the Weak Gravity Conjecture, JHEP04, 017 (2016), [1504.00659]. · Zbl 1388.83892
[14] D.Junghans, Large‐Field Inflation with Multiple Axions and the Weak Gravity Conjecture, JHEP02, 128 (2016), [1504.03566]. · Zbl 1388.83122
[15] B.Heidenreich, M.Reece, and T.Rudelius, Weak Gravity Strongly Constrains Large‐Field Axion Inflation, JHEP12, 108 (2015), [1506.03447]. · Zbl 1388.81939
[16] K.Kooner, S.Parameswaran, and I.Zavala, Warping the Weak Gravity Conjecture, Phys. Lett.B759, 402-409 (2016), [1509.07049]. · Zbl 1367.83092
[17] T.Banks, M.Dine, P. J.Fox, and E.Gorbatov, On the possibility of large axion decay constants, JCAP0306, 001 (2003), [hep‐th/0303252].
[18] L. E.Ibanez, M.Montero, A.Uranga, and I.Valenzuela, Relaxion Monodromy and the Weak Gravity Conjecture, JHEP04, 020 (2016), [1512.00025]. · Zbl 1388.83923
[19] A.Hebecker, F.Rompineve, and A.Westphal, Axion Monodromy and the Weak Gravity Conjecture, JHEP04, 157 (2016), [1512.03768]. · Zbl 1388.83078
[20] Y.Nakayama and Y.Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev.D92, 126006 (2015), [1509.01647].
[21] D.Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP01, 122 (2016), [1510.07911]. · Zbl 1388.83255
[22] H.Ooguri and C.Vafa, Non‐supersymmetric AdS and the Swampland, 1610.01533.
[23] B.Freivogel and M.Kleban, Vacua Morghulis, 1610.04564.
[24] U.Danielsson and G.Dibitetto, The fate of stringy AdS vacua and the WGC, 1611.01395.
[25] T.Banks, Note on a Paper by Ooguri and Vafa, 1611.08953.
[26] W.Cottrell, G.Shiu, and P.Soler, Weak Gravity Conjecture and Extremal Black Holes, 1611.06270.
[27] T.Higaki, K. S.Jeong, N.Kitajima, T.Sekiguchi, and F.Takahashi, Topological Defects and nano‐Hz Gravitational Waves in Aligned Axion Models, JHEP08, 044 (2016), [1606.05552].
[28] P.Saraswat, The Weak Gravity Conjecture and Effective Field Theory, 1608.06951.
[29] A. G.Cohen and D. B.Kaplan, The Exact Metric About Global Cosmic Strings, Phys. Lett.B215, 67-72 (1988).
[30] J.Polchinski, Open heterotic strings, JHEP09, 082 (2006), [hep‐th/0510033].
[31] T.Banks and N.Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.D83, 084019 (2011), [1011.5120].
[32] R.Kallosh, A. D.Linde, D. A.Linde, and L.Susskind, Gravity and global symmetries, Phys. Rev.D52, 912-935 (1995), [hep‐th/9502069].
[33] R.Gregory, Nonsingular global strings, Phys. Rev.D54, 4955-4962 (1996), [gr‐qc/9606002].
[34] R.Gregory and C.Santos, Space‐time structure of the global vortex, Class. Quant. Grav.20, 21-36 (2003), [hep‐th/0208037]. · Zbl 1039.83032
[35] A. D.Linde, Monopoles as big as a universe, Phys. Lett.B327, 208-213 (1994), [astro‐ph/9402031].
[36] A.Vilenkin, Topological inflation, Phys. Rev. Lett.72, 3137-3140 (1994), [hep‐th/9402085].
[37] J. E.Kim, H. P.Nilles, and M.Peloso, Completing natural inflation, JCAP0501, 005 (2005), [hep‐ph/0409138].
[38] M.Berg, E.Pajer, and S.Sjors, Dante’s Inferno, Phys. Rev.D81, 103535 (2010), [0912.1341].
[39] I.Ben‐Dayan, F. G.Pedro, and A.Westphal, Towards Natural Inflation in String Theory, Phys. Rev.D92, 023515 (2015), [1407.2562].
[40] N.Kaloper and L.Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett.102, 121301 (2009), [0811.1989].
[41] N.Kaloper, A.Lawrence, and L.Sorbo, An Ignoble Approach to Large Field Inflation, JCAP1103, 023 (2011), [1101.0026].
[42] M. J.Dolan, P.Draper, J.Kozaczuk, and H.Patel, Transplanckian Censorship and Global Cosmic Strings, 1701.05572.
[43] W. A.Hiscock, Exact Gravitational Field of a String, Phys. Rev.D31, 3288-3290 (1985).
[44] J. R.GottIII, Gravitational lensing effects of vacuum strings: Exact solutions, Astrophys. J.288, 422-427 (1985).
[45] P.Laguna and D.Garfinkle, Space‐time of Supermassive U(1) Gauge Cosmic Strings, Phys. Rev.D40, 1011-1016 (1989).
[46] B.Linet, On the supermassive U(1) gauge cosmic strings, Class. Quant. Grav.7, L75-L79 (1990). · Zbl 0687.53074
[47] M. E.Ortiz, A New look at supermassive cosmic strings, Phys. Rev.D43, 2521-2526 (1991).
[48] I.Cho, Inflation and nonsingular space‐times of cosmic strings, Phys. Rev.D58, 103509 (1998), [gr‐qc/9804086].
[49] I.Cho and A.Vilenkin, Space‐time structure of an inflating global monopole, Phys. Rev.D56, 7621-7626 (1997), [gr‐qc/9708005].
[50] G.Shiu, W.Staessens, and F.Ye, Widening the Axion Window via Kinetic and Stückelberg Mixings, Phys. Rev. Lett.115, 181601 (2015), [1503.01015].
[51] G.Dvali, Three‐form gauging of axion symmetries and gravity, hep‐th/0507215.
[52] M.Haack, R.Kallosh, A.Krause, A. D.Linde, D.Lust, and M.Zagermann, Update of D3/D7‐Brane Inflation on K3 x T**2/Z(2), Nucl. Phys.B806, 103-177 (2009), [0804.3961]. · Zbl 1192.83079
[53] C. P.Burgess, M.Majumdar, D.Nolte, F.Quevedo, G.Rajesh, and R.‐J.Zhang, The Inflationary brane anti‐brane universe, JHEP07, 047 (2001), [hep‐th/0105204].
[54] E.Bergshoeff, M.deRoo, M. B.Green, G.Papadopoulos, and P. K.Townsend, Duality of type II 7 branes and 8 branes, Nucl. Phys.B470, 113-135 (1996), [hep‐th/9601150]. · Zbl 1003.81532
[55] E.Bergshoeff, R.Kallosh, T.Ortin, D.Roest, and A.VanProeyen, New formulations of D = 10 supersymmetry and D8 ‐ O8 domain walls, Class. Quant. Grav.18, 3359-3382 (2001), [hep‐th/0103233]. · Zbl 1004.83053
[56] D.Klaewer and E.Palti, Super‐Planckian Spatial Field Variations and Quantum Gravity, 1610.00010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.