×

Simple invariant solutions of the dynamic equation for a monatomic gas. (English. Russian original) Zbl 1522.76072

Proc. Steklov Inst. Math. 321, Suppl. 1, S186-S203 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 115-132 (2023).
Summary: We consider a system of gas dynamics equations with the state equation of a monatomic gas. The equations admit a group of transformations with a 14-dimensional Lie algebra. We consider 4-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. The invariants of the basis operators are computed. Eight simple invariant solutions of rank 0 are obtained. Of these, four physical solutions specify a gas motion with a linear velocity field and one physical solution specifies a motion with a linear dependence of components of the velocity vector on two space coordinates. All these solutions except one have variable entropy. The motion of gas particles as a whole is constructed for the isentropic solution. The solutions obtained have a density singularity on a constant or moving plane, which is a boundary with vacuum or a wall.

MSC:

76N15 Gas dynamics (general theory)
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics

Software:

PODMODELI
Full Text: DOI

References:

[1] Ovsyannikov, LV, Simple’ solutions of the equations of dynamics for a polytropic gas, J. Appl. Mech. Tech. Phys., 40, 2, 191-197 (1999) · Zbl 0954.76082 · doi:10.1007/BF02468514
[2] Panov, AV, Rank 0 invariant solutions of dynamics of two-phase medium, AIP Conf. Proc., 1759, 1 (2016) · doi:10.1063/1.4959697
[3] Pavlenko, AS, Symmetries and solutions of equations of two-dimensional motions of a polytropic gas, Sib. Elektron. Mat. Izv., 2, 291-307 (2005) · Zbl 1150.76464
[4] Golovin, SV, Submodels of Polytropic Gas Dynamics (2000), Novosibirsk: Novosib. State Univ., Novosibirsk
[5] Cherevko, AA, Optimal System of Subalgebras for the Lie Algebra of Operators Admitted by a System of Gas Dynamics Equations with State Equation (1996), Novosibirsk: Inst. Hydrodyn., Novosibirsk
[6] Shayakhmetova, RF, Embedded invariant submodels for the motion of a monatomic gas, Sib. Elektron. Mat. Izv., 11, 605-625 (2014) · Zbl 1329.35030
[7] Shayakhmetova, RF, Invariant submodels of rank 3 and rank 2 of a monatomic gas with the projective operator, Trudy Inst. Mekh. Mavlyutova UNTs RAN, 11, 1, 127-135 (2016) · doi:10.21662/uim2016.1.019
[8] Nikonorova, RF, The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras, Sib. Elektron. Mat. Izv., 15, 1216-1226 (2018) · Zbl 1404.35369
[9] Sidorov, AF, Two classes of solutions of the gasdynamical equations, J. Appl. Mech. Tech. Phys., 21, 588-594 (1980) · doi:10.1007/BF00910159
[10] Ovsyannikov, LV, A new solution of hydrodynamic equations, Dokl. AN SSSR, 111, 1, 47-49 (1956) · Zbl 0073.41704
[11] Ovsyannikov, LV, The ‘podmodeli’ program. Gas dynamics, J. Appl. Math. Mech., 58, 4, 601-627 (1994) · Zbl 0890.76070 · doi:10.1016/0021-8928(94)90137-6
[12] Khabirov, SV, A hierarchy of submodels of differential equations, Sib. Math. J., 54, 6, 1110-1119 (2013) · Zbl 1284.35029 · doi:10.1134/S0037446613060189
[13] Siraeva, DT; Yulmukhametova, YuV, Transformations of gas dynamics equations and of basis operators of an admitted 11-dimensional Lie algebra, Mnogofaz. Sist., 15, 217-222 (2020) · doi:10.21662/mfs2020.3.133
[14] Ovsyannikov, LV; Chupakhin, AP, Regular partially invariant submodels of the equations of gas dynamics, J. Appl. Math. Mech., 60, 6, 969-978 (1996) · Zbl 1040.76518 · doi:10.1016/S0021-8928(96)00119-0
[15] Khabirov, SV, Simple partially invariant solutions, Ufa Math. J., 11, 1, 90-99 (2019) · Zbl 1463.35078 · doi:10.13108/2019-11-1-90
[16] Pavlenko, AS, Projective submodel of the Ovsyannikov vortex, J. Appl. Mech. Tech. Phys., 46, 4, 459-470 (2005) · Zbl 1078.76058 · doi:10.1007/s10808-005-0097-2
[17] Shayakhmetova, RF, Vortex dilatation of a monatomic gas, Trudy Inst. Mekh. Mavlyutova UNTs RAN, 10, 110-113 (2014) · doi:10.21662/uim2014.1.021
[18] Fellner, K.; Schmeiser, C., Classification of equilibrium solutions of the cometary flow equation and explicit solutions of the Euler equations for monatomic ideal gases, J. Stat. Phys., 129, 493-507 (2007) · Zbl 1131.82037 · doi:10.1007/s10955-007-9396-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.