Skip to main content
Log in

Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider a system of gas dynamics equations with the state equation of a monatomic gas. The equations admit a group of transformations with a 14-dimensional Lie algebra. We consider 4-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. The invariants of the basis operators are computed. Eight simple invariant solutions of rank \(0\) are obtained. Of these, four physical solutions specify a gas motion with a linear velocity field and one physical solution specifies a motion with a linear dependence of components of the velocity vector on two space coordinates. All these solutions except one have variable entropy. The motion of gas particles as a whole is constructed for the isentropic solution. The solutions obtained have a density singularity on a constant or moving plane, which is a boundary with vacuum or a wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

REFERENCES

  1. L. V. Ovsyannikov, “Simple’ solutions of the equations of dynamics for a polytropic gas,” J. Appl. Mech. Tech. Phys. 40 (2), 191–197 (1999). https://doi.org/10.1007/BF02468514

    Article  MathSciNet  Google Scholar 

  2. A. V. Panov, “Rank 0 invariant solutions of dynamics of two-phase medium,” AIP Conf. Proc. 1759 (1), article no. 020083 (2016). https://doi.org/10.1063/1.4959697

    Article  MathSciNet  Google Scholar 

  3. A. S. Pavlenko, “Symmetries and solutions of equations of two-dimensional motions of a polytropic gas,” Sib. Elektron. Mat. Izv. 2, 291–307 (2005).

    MathSciNet  MATH  Google Scholar 

  4. S. V. Golovin, Submodels of Polytropic Gas Dynamics, Candidate’s Dissertation in Physics and Mathematics (Novosib. State Univ., Novosibirsk, 2000).

    Google Scholar 

  5. A. A. Cherevko, Optimal System of Subalgebras for the Lie Algebra of Operators Admitted by a System of Gas Dynamics Equations with State Equation \(p=f(S)\rho^{5/3}\), Preprint No. 4-96 (Inst. Hydrodyn., Novosibirsk, 1996).

    Google Scholar 

  6. R. F. Shayakhmetova, “Embedded invariant submodels for the motion of a monatomic gas,” Sib. Elektron. Mat. Izv. 11, 605–625 (2014).

    MathSciNet  MATH  Google Scholar 

  7. R. F. Shayakhmetova, “Invariant submodels of rank 3 and rank 2 of a monatomic gas with the projective operator,” Trudy Inst. Mekh. Mavlyutova UNTs RAN 11 (1), 127–135 (2016). https://doi.org/10.21662/uim2016.1.019

    Article  Google Scholar 

  8. R. F. Nikonorova, “The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras,” Sib. Elektron. Mat. Izv. 15, 1216–1226 (2018).

    MathSciNet  MATH  Google Scholar 

  9. A. F. Sidorov, “Two classes of solutions of the gasdynamical equations,” J. Appl. Mech. Tech. Phys. 21, 588–594 (1980). https://doi.org/10.1007/BF00910159

    Article  Google Scholar 

  10. L. V. Ovsyannikov, “A new solution of hydrodynamic equations,” Dokl. AN SSSR 111 (1), 47–49 (1956).

    MATH  Google Scholar 

  11. L. V. Ovsyannikov, “The ‘podmodeli’ program. Gas dynamics,” J. Appl. Math. Mech. 58 (4), 601–627 (1994). https://doi.org/10.1016/0021-8928(94)90137-6

    Article  MathSciNet  MATH  Google Scholar 

  12. S. V. Khabirov, “A hierarchy of submodels of differential equations,” Sib. Math. J. 54 (6), 1110–1119 (2013). https://doi.org/10.1134/S0037446613060189

    Article  MathSciNet  MATH  Google Scholar 

  13. D. T. Siraeva and Yu. V. Yulmukhametova, “Transformations of gas dynamics equations and of basis operators of an admitted 11-dimensional Lie algebra,” Mnogofaz. Sist. 15 (3–4), 217–222 (2020). https://doi.org/10.21662/mfs2020.3.133

    Article  Google Scholar 

  14. L. V. Ovsyannikov and A. P. Chupakhin, “Regular partially invariant submodels of the equations of gas dynamics,” J. Appl. Math. Mech. 60 (6) 969–978 (1996). https://doi.org/10.1016/S0021-8928(96)00119-0

    Article  MathSciNet  MATH  Google Scholar 

  15. S. V. Khabirov, “Simple partially invariant solutions,” Ufa Math. J. 11 (1) 90–99 (2019). https://doi.org/10.13108/2019-11-1-90

    Article  MathSciNet  MATH  Google Scholar 

  16. A. S. Pavlenko, “Projective submodel of the Ovsyannikov vortex,” J. Appl. Mech. Tech. Phys. 46 (4), 459–470 (2005). https://doi.org/10.1007/s10808-005-0097-2

    Article  MathSciNet  MATH  Google Scholar 

  17. R. F. Shayakhmetova, “Vortex dilatation of a monatomic gas,” Trudy Inst. Mekh. Mavlyutova UNTs RAN 10, 110–113 (2014). https://doi.org/10.21662/uim2014.1.021

    Article  Google Scholar 

  18. K. Fellner and C. Schmeiser, “Classification of equilibrium solutions of the cometary flow equation and explicit solutions of the Euler equations for monatomic ideal gases,” J. Stat. Phys. 129, 493–507 (2007). https://doi.org/10.1007/s10955-007-9396-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Nikonorova.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 29, No. 2, pp. 115 - 132, 2023 https://doi.org/10.21538/0134-4889-2023-29-2-115-132.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonorova, R.F. Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas. Proc. Steklov Inst. Math. 321 (Suppl 1), S186–S203 (2023). https://doi.org/10.1134/S0081543823030161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823030161

Keywords

Navigation