×

Universal K-matrices for quantum Kac-Moody algebras. (English) Zbl 1522.17017

In this paper the authors present a general construction of universal \(K\)-matrices for quantum groups corresponding to arbitrary symmetrizable Kac-Moody algebras. The construction is based on the notion of a cylindrical bialgebra, which is a quasitriangular bialgebra endowed with a universal solution of a generalized reflection equation, called a universal \(K\)-matrix, which yields an action of cylindrical braid groups on tensor products of representations. The relevant reflection equation here is twisted by an algebra automorphism which may not preserve the coproduct; the obstruction to being a morphism of quasitriangular bialgebras is however controlled by a Drinfeld twist. New examples of such universal \(K\)-matrices are shown to arise from quantum symmetric pairs of Kac-Moody type and depend upon the choice of a pair of generalized Satake diagrams. In the case of finite type, the construction yields a discrete family of universal \(K\)-matrices interpolating between the universal \(K\)-matrix of M. Balagović and S. Kolb [J. Reine Angew. Math. 747, 299–353 (2019; Zbl 1425.81058)] and the quasi-\(K\)-matrix of H. Bao and W. Wang [A new approach to Kazhdan-Lusztig theory of type \(B\) via quantum symmetric pairs. Paris: Société Mathématique de France (SMF) (2018; Zbl 1411.17001)]. It is also shown that quantum symmetric pairs for the quantum loop algebra \(U_q(L\mathfrak{sl}_2)\), the universal \(K\)-matrices constructed in the paper give rise to formal solutions of a generalized reflection equation with a spectral parameter.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
20F36 Braid groups; Artin groups
16T10 Bialgebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
46A32 Spaces of linear operators; topological tensor products; approximation properties
20F55 Reflection and Coxeter groups (group-theoretic aspects)

References:

[1] Andrea Appel and Valerio Toledano Laredo, Monodromy of the Casimir connection of a symmetrisable Kac-Moody algebra, Preprint, http://arxiv.org/abs/1512.03041arXiv:1512.03041, 2015. · Zbl 1442.17015
[2] Appel, Andrea, A 2-categorical extension of Etingof-Kazhdan quantisation, Selecta Math. (N.S.), 3529-3617 (2018) · Zbl 1431.17008 · doi:10.1007/s00029-017-0381-z
[3] Appel, Andrea, Uniqueness of Coxeter structures on Kac-Moody algebras, Adv. Math., 1-104 (2019) · Zbl 1442.17015 · doi:10.1016/j.aim.2019.02.022
[4] Appel, Andrea, Coxeter categories and quantum groups, Selecta Math. (N.S.), Paper No. 44, 97 pp. (2019) · Zbl 1441.17013 · doi:10.1007/s00029-019-0490-y
[5] Appel, Andrea, Pure braid group actions on category {O} (2022), in preparation
[6] Andrea Appel and Bart Vlaar, Trigonometric K-matrices for finite-dimensional representations of quantum affine algebras, Preprint, http://arxiv.org/abs/2203.16503arXiv:2203.16503, 2022.
[7] Back-Valente, Val\'{e}rie, Formes presque-d\'{e}ploy\'{e}es des alg\`ebres de Kac-Moody: classification et racines relatives, J. Algebra, 43-96 (1995) · Zbl 0823.17034 · doi:10.1006/jabr.1995.1004
[8] Baseilhac, Pascal, Non-Abelian symmetries of the half-infinite XXZ spin chain, Nuclear Phys. B, 373-385 (2017) · Zbl 1356.82007 · doi:10.1016/j.nuclphysb.2017.01.012
[9] Balagovi\'{c}, Martina, The bar involution for quantum symmetric pairs, Represent. Theory, 186-210 (2015) · Zbl 1376.17018 · doi:10.1090/ert/469
[10] Balagovi\'{c}, Martina, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math., 299-353 (2019) · Zbl 1425.81058 · doi:10.1515/crelle-2016-0012
[11] Brieskorn, Egbert, Die Fundamentalgruppe des Raumes der regul\"{a}ren Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 57-61 (1971) · Zbl 0204.56502 · doi:10.1007/BF01389827
[12] Brieskorn, Egbert, Artin-Gruppen und Coxeter-Gruppen, Invent. Math., 245-271 (1972) · Zbl 0243.20037 · doi:10.1007/BF01406235
[13] Brochier, Adrien, A Kohno-Drinfeld theorem for the monodromy of cyclotomic KZ connections, Comm. Math. Phys., 55-96 (2012) · Zbl 1236.32009 · doi:10.1007/s00220-012-1424-0
[14] Baseilhac, Pascal, Asymptotic representations of augmented \(q\)-Onsager algebra and boundary \(K\)-operators related to Baxter Q-operators, Nuclear Phys. B, 397-437 (2018) · Zbl 1382.81112 · doi:10.1016/j.nuclphysb.2018.02.017
[15] Bao, Huanchen, A new approach to Kazhdan-Lusztig theory of type \(B\) via quantum symmetric pairs, Ast\'{e}risque, vii+134 pp. (2018) · Zbl 1411.17001
[16] Bao, Huanchen, Canonical bases arising from quantum symmetric pairs of Kac-Moody type, Compos. Math., 1507-1537 (2021) · Zbl 1486.17010 · doi:10.1112/S0010437X2100734X
[17] Ben-Zvi, David, Quantum character varieties and braided module categories, Selecta Math. (N.S.), 4711-4748 (2018) · Zbl 1456.17010 · doi:10.1007/s00029-018-0426-y
[18] Cherednik, Ivan, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz., 35-44 (1984) · Zbl 0575.22021
[19] Cherednik, Ivan, Quantum Knizhnik-Zamolodchikov equations and affine root systems, Comm. Math. Phys., 109-136 (1992) · Zbl 0849.17025
[20] De Commer, Kenny, Quantum flag manifolds, quantum symmetric spaces and their associated universal \(K\)-matrices, Adv. Math., 107029, 100 pp. (2020) · Zbl 1448.17017 · doi:10.1016/j.aim.2020.107029
[21] Chari, Vyjayanthi, Quantum affine algebras, Comm. Math. Phys., 261-283 (1991) · Zbl 0739.17004
[22] Chari, Vyjayanthi, A guide to quantum groups, xvi+651 pp. (1995), Cambridge University Press, Cambridge · Zbl 0839.17010
[23] Davydov, Alexei, Noncommutative structures in mathematics and physics. Twisted automorphisms of Hopf algebras, 103-130 (2010), K. Vlaam. Acad. Belgi\"{e} Wet. Kunsten (KVAB), Brussels · Zbl 1205.16026
[24] Deligne, Pierre, Les immeubles des groupes de tresses g\'{e}n\'{e}ralis\'{e}s, Invent. Math., 273-302 (1972) · Zbl 0238.20034 · doi:10.1007/BF01406236
[25] Deligne, Pierre, The Grothendieck Festschrift, Vol. II. Cat\'{e}gories tannakiennes, Progr. Math., 111-195 (1990), Birkh\"{a}user Boston, Boston, MA · Zbl 0727.14010
[26] Delius, Gustav W., Quantum affine reflection algebras of type \(d^{(1)}_n\) and reflection matrices, Lett. Math. Phys., 211-217 (2002) · Zbl 1042.17010 · doi:10.1023/A:1022259710600
[27] Dobson, Liam, Factorisation of quasi \(K\)-matrices for quantum symmetric pairs, Selecta Math. (N.S.), Paper No. 63, 55 pp. (2019) · Zbl 1442.17017 · doi:10.1007/s00029-019-0508-5
[28] Donin, Joseph, On a universal solution to the reflection equation, Lett. Math. Phys., 179-194 (2003) · Zbl 1042.17011 · doi:10.1023/A:1024438101617
[29] Delius, Gustav W., Quantum group symmetry in sine-Gordon and affine Toda field theories on the half-line, Comm. Math. Phys., 173-190 (2003) · Zbl 1040.81042 · doi:10.1007/s00220-002-0758-4
[30] tom Dieck, Tammo, Categories of rooted cylinder ribbons and their representations, J. Reine Angew. Math., 35-63 (1998) · Zbl 0949.57007 · doi:10.1515/crll.1998.010
[31] tom Dieck, Tammo, Quantum groups and cylinder braiding, Forum Math., 619-639 (1998) · Zbl 0974.17017 · doi:10.1515/form.10.5.619
[32] Drinfel\cprime d, Vladimir G., Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, 1060-1064 (1985) · Zbl 0588.17015
[33] Drinfel\cprime d, Vladimir G., Proceedings of the International Congress of Mathematicians, Vol. 1, 2. Quantum groups, 798-820 (1986), Amer. Math. Soc., Providence, RI
[34] Drinfel\cprime d, Vladimir G., Almost cocommutative Hopf algebras, Leningrad Math. J.. Algebra i Analiz, 30-46 (1989)
[35] Drinfel\cprime d, Vladimir G., Quantum groups. On some unsolved problems in quantum group theory, Lecture Notes in Math., 1-8 (1990), Springer, Berlin · Zbl 0765.17014 · doi:10.1007/BFb0101175
[36] Pavel Etingof, Private communication, 2022.
[37] Etingof, Pavel I., Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras, Represent. Theory, 346-373 (2003) · Zbl 1066.17005 · doi:10.1090/S1088-4165-03-00201-2
[38] Enriquez, Benjamin, Quasi-reflection algebras and cyclotomic associators, Selecta Math. (N.S.), 391-463 (2007) · Zbl 1221.17014 · doi:10.1007/s00029-007-0048-2
[39] Benjamin Enriquez, Half-balanced braided monoidal categories and Teichm\"uller groupoids in genus zero, Preprint, http://arxiv.org/abs/1009.2652v2arXiv:1009.2652v2, 2010.
[40] Ehrig, Michael, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math., 58-142 (2018) · Zbl 1432.16022 · doi:10.1016/j.aim.2018.01.013
[41] Frenkel, Igor B., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys., 1-60 (1992) · Zbl 0760.17006
[42] Gavrilik, Alexandre M., \(q\)-{D}eformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys., 215-220 (1991) · Zbl 0735.17020 · doi:10.1007/BF00420371
[43] Ghoshal, Subir, Boundary \(S\) matrix and boundary state in two-dimensional integrable quantum field theory, Internat. J. Modern Phys. A, 3841-3885 (1994) · Zbl 0985.81714 · doi:10.1142/S0217751X94001552
[44] Heck, Andr\'{e}, Involutive automorphisms of root systems, J. Math. Soc. Japan, 643-658 (1984) · Zbl 0533.17003 · doi:10.2969/jmsj/03640643
[45] Jantzen, Jens Carsten, Lectures on quantum groups, Graduate Studies in Mathematics, viii+266 pp. (1996), American Mathematical Society, Providence, RI · Zbl 0842.17012 · doi:10.1090/gsm/006
[46] Jimbo, Michio, A \(q\)-analogue of \(U({\mathfrak{g}}{\mathfrak{l}}(N+1))\), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 247-252 (1986) · Zbl 0602.17005 · doi:10.1007/BF00400222
[47] Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[48] Tolstoy, Valeri N., Universal \(R\)-matrix for quantized nontwisted affine Lie algebras, Funct. Anal. Appl.. Funktsional. Anal. i Prilozhen., 85-88 (1992) · Zbl 0758.17011 · doi:10.1007/BF01077085
[49] Kolb, Stefan, Quantum symmetric Kac-Moody pairs, Adv. Math., 395-469 (2014) · Zbl 1300.17011 · doi:10.1016/j.aim.2014.08.010
[50] Kolb, Stefan, Braided module categories via quantum symmetric pairs, Proc. Lond. Math. Soc. (3), 1-31 (2020) · Zbl 1486.17026 · doi:10.1112/plms.12303
[51] Stefan Kolb, The bar involution for quantum symmetric pairs-hidden in plain sight, Preprint, http://arxiv.org/abs/2104.06120arXiv:2104.06120, 2021.
[52] Kirillov, Anatoli\u{i} N., \(q\)-Weyl group and a multiplicative formula for universal \(R\)-matrices, Comm. Math. Phys., 421-431 (1990) · Zbl 0723.17014
[53] Kulish, Petr Petrovich, Algebraic structures related to reflection equations, J. Phys. A, 5963-5975 (1992) · Zbl 0774.17019
[54] Kazhdan, David, Representations of quantum affine algebras, Selecta Math. (N.S.), 537-595 (1995) · Zbl 0842.17021 · doi:10.1007/BF01589498
[55] Kamnitzer, Joel, The crystal commutor and Drinfeld’s unitarized \(R\)-matrix, J. Algebraic Combin., 315-335 (2009) · Zbl 1230.17008 · doi:10.1007/s10801-008-0137-0
[56] Kac, Victor G., On automorphisms of Kac-Moody algebras and groups, Adv. Math., 129-195 (1992) · Zbl 0851.17026 · doi:10.1016/0001-8708(92)90063-Q
[57] Kolb, Stefan, Symmetric pairs for Nichols algebras of diagonal type via star products, Adv. Math., 107042, 69 pp. (2020) · Zbl 1473.17040 · doi:10.1016/j.aim.2020.107042
[58] Koornwinder, Tom H., Askey-Wilson polynomials as zonal spherical functions on the \(\text{SU}(2)\) quantum group, SIAM J. Math. Anal., 795-813 (1993) · Zbl 0799.33015 · doi:10.1137/0524049
[59] Letzter, Gail, Symmetric pairs for quantized enveloping algebras, J. Algebra, 729-767 (1999) · Zbl 0956.17007 · doi:10.1006/jabr.1999.8015
[60] Letzter, Gail, New directions in Hopf algebras. Coideal subalgebras and quantum symmetric pairs, Math. Sci. Res. Inst. Publ., 117-165 (2002), Cambridge Univ. Press, Cambridge · Zbl 1025.17005
[61] Letzter, Gail, Quantum symmetric pairs and their zonal spherical functions, Transform. Groups, 261-292 (2003) · Zbl 1107.17010 · doi:10.1007/s00031-003-0719-9
[62] Levendorski\u{\i }, Sergei Z., Some applications of the quantum Weyl groups, J. Geom. Phys., 241-254 (1990) · Zbl 0729.17009 · doi:10.1016/0393-0440(90)90013-S
[63] Lusztig, George, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 447-498 (1990) · Zbl 0703.17008 · doi:10.2307/1990961
[64] Lusztig, George, Introduction to quantum groups, Progress in Mathematics, xii+341 pp. (1993), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0788.17010
[65] Noumi, Masatoshi, Special functions, \(q\)-series and related topics. Multivariable Askey-Wilson polynomials and quantum complex Grassmannians, Fields Inst. Commun., 167-177 (1995), Amer. Math. Soc., Providence, RI · Zbl 0906.33011 · doi:10.1090/s0002-9947-98-01971-0
[66] Noumi, Masatoshi, Group theoretical methods in physics. Quantum symmetric spaces and related \(q\)-orthogonal polynomials, 28-40 (1994), World Sci. Publ., River Edge, NJ · Zbl 0898.33013
[67] Radford, David E., The structure of Hopf algebras with a projection, J. Algebra, 322-347 (1985) · Zbl 0549.16003 · doi:10.1016/0021-8693(85)90124-3
[68] Vidas Regelskis and Bart Vlaar, Reflection matrices, coideal subalgebras and generalized Satake diagrams of affine type, Preprint, http://arxiv.org/abs/1602.08471arXiv:1602.08471, 2016. · Zbl 1504.17022
[69] Regelskis, Vidas, Quasitriangular coideal subalgebras of \(U_q(\mathfrak{g})\) in terms of generalized Satake diagrams, Bull. Lond. Math. Soc., 693-715 (2020) · Zbl 1504.17022 · doi:10.1112/blms.12360
[70] Vidas Regelskis and Bart Vlaar, Pseudo-symmetric pairs for Kac-Moody algebras, Preprint, http://arxiv.org/abs/2108.00260arXiv:2108.00260, 2021.
[71] Sklyanin, Evgeny K., Boundary conditions for integrable quantum systems, J. Phys. A, 2375-2389 (1988) · Zbl 0685.58058
[72] Snyder, Noah, The half-twist for \(U_q({\mathfrak{g}})\) representations, Algebra Number Theory, 809-834 (2009) · Zbl 1241.17019 · doi:10.2140/ant.2009.3.809
[73] Tingley, Peter, A formula for the \(R\)-matrix using a system of weight preserving endomorphisms, Represent. Theory, 435-445 (2010) · Zbl 1233.17013 · doi:10.1090/S1088-4165-2010-00378-7
[74] Tits, Jacques, Normalisateurs de tores. I. Groupes de Coxeter \'{e}tendus, J. Algebra, 96-116 (1966) · Zbl 0145.24703 · doi:10.1016/0021-8693(66)90053-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.