×

Braided module categories via quantum symmetric pairs. (English) Zbl 1486.17026

Author’s abstract: Let \(\mathfrak{g}\) be a finite-dimensional complex semisimple Lie algebra. The finite-dimensional representations of the quantized enveloping algebra \(U_q(\mathfrak{g})\) form a braided monoidal category \(\mathcal{O}_{\mathrm{int}}\). We show that the category of finite dimensional representations of a quantum symmetric pair coideal subalgebra \(B_{\mathrm{c,s}}\) of \(U_q(\mathfrak{g})\) is a braided module category over an equivariantization \(\mathcal{O}_{\mathrm{int}}^{(\sigma)}\) of \(\mathcal{O}_{\mathrm{int}}\). The braiding for \(B_{\mathrm{c,s}}\) is realized by a universal K-matrix which lies in a completion of \(B_{\mathrm{c,s}}\otimes U_q(\mathfrak{g})\). We appply these results to describe a distinguished basis of the center of \(B_{\mathrm{c,s}}\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
57K10 Knot theory

References:

[1] M.Balagović and S.Kolb, ‘The bar involution for quantum symmetric pairs’, Represent. Theory19 (2015) 186-210. · Zbl 1376.17018
[2] M.Balagović and S.Kolb, ‘Universal K‐matrix for quantum symmetric pairs’, J. reine angew. Math.747 (2019) 299-353. · Zbl 1425.81058
[3] H.Bao and W.Wang, ‘A new approach to Kazhdan‐Lusztig theory of type \(B\) via quantum symmetric pairs’, Asterisque40 (2018) vii+134 pp. · Zbl 1411.17001
[4] H.Bao and W.Wang, ‘Canonical bases arising from quantum symmetric pairs’, Invent. Math.213 (2018) 1099-1177. · Zbl 1416.17001
[5] P.Baseilhac, ‘Deformed Dolan‐Grady relations in quantum integrable models’, Nuclear Phys. B709 (2005) 491-521. · Zbl 1160.81392
[6] P.Baumann, ‘On the center of quantized enveloping algebras’, J. Algebra203 (1998) 244-260. · Zbl 0918.17006
[7] D.Ben‐Zvi, A.Brochier and D.Jordan, ‘Quantum character varieties and braided module categories’, Selecta Math.24 (2018) 4711-4748. · Zbl 1456.17010
[8] A.Brochier, ‘Cyclotomic associators and finite type invariants for tangles in the solid torus’, Algebr. Geom. Topol.13 (2013) 3365-3409. · Zbl 1321.57005
[9] P.Caldero, ‘Éléments ad‐finis de certains groupes quantiques’, C. R. Acad. Sci. Paris (I)316 (1993) 327-329. · Zbl 0773.17010
[10] V. G.Drinfeld, ‘Quantum groups’, Proceedings International Congress of Mathematical, Berkeley, 1986 (American Mathematical Society, Providence, RI, 1987) 798-820. · Zbl 0667.16003
[11] V. G.Drinfeld, ‘On almost cocommutative Hopf algebras’, Leningrad Math. J.1 (1990) 321-342. · Zbl 0718.16035
[12] V.Drinfeld, S.Gelaki, D.Nikshych and V.Ostrik, ‘On braided fusion categories. I’, Selecta Math.16 (2010) 1-119. · Zbl 1201.18005
[13] B.Enriquez, ‘Quasi‐reflection algebras and cyclotomic associators’, Selecta Math.13 (2007) 391-463. · Zbl 1221.17014
[14] M.Jimbo, ‘A \(q\)‐analogue of \(U ( \mathfrak{g} )\) and the Yang‐Baxter equation’, Lett. Math. Phys.11 (1985) 63-69. · Zbl 0587.17004
[15] A.Joseph and G.Letzter, ‘Separation of variables for quantized enveloping algebras’, Amer. J. Math.116 (1994) 127-177. · Zbl 0811.17007
[16] C.Kassel, Quantum groups, Graduate Texts in Mathematics (Springer, Heidelberg, 1995). · Zbl 0808.17003
[17] A.Klimyk and K.Schmüdgen, Quantum groups and their representations (Springer, Heidelberg, 1997). · Zbl 0891.17010
[18] S.Kolb, ‘Quantum symmetric Kac‐Moody pairs’, Adv. Math.267 (2014) 395-469. · Zbl 1300.17011
[19] S.Kolb and G.Letzter, ‘The center of quantum symmetric pair coideal subalgebras’, Represent. Theory12 (2008) 294-326. · Zbl 1243.17008
[20] S.Kolb and J.Stokman, ‘Reflection equation algebras, coideal subalgebras, and their centres’, Selecta Math.15 (2009) 621-664. · Zbl 1236.17023
[21] G.Letzter, ‘Symmetric pairs for quantized enveloping algebras’, J. Algebra220 (1999) 729-767. · Zbl 0956.17007
[22] G.Letzter, ‘Quantum symmetric pairs and their zonal spherical functions’, Transform. Groups8 (2003) 261-292. · Zbl 1107.17010
[23] G.Letzter, Invariant differential operators for quantum symmetric spaces, Memoirs of the American Mathematical Society 193 (American Mathematical Society, Providence, RI, 2008). · Zbl 1236.17024
[24] G.Lusztig, Introduction to quantum groups (Birkhäuser, Boston, 1994). · Zbl 0845.20034
[25] N. Y.Reshetikhin and V. G.Turaev, ‘Ribbon graphs and their invariants derived from quantum groups’, Comm. Math. Phys.127 (1990) 1-26. · Zbl 0768.57003
[26] T. A.Springer, ‘The classification of involutions of simple algebraic groups’, J. Fac. Sci. Univ. Tokyo Sect. IA Math.34 (1987) 655-670. · Zbl 0653.20046
[27] T.tom Dieck, ‘Categories of rooted cylinder ribbons and their representations’, J. reine angew. Math.494 (1998) 36-63. · Zbl 0949.57007
[28] T.tom Dieck and R.Häring‐Oldenburg, ‘Quantum groups and cylinder braiding’, Forum Math.10 (1998) 619-639. · Zbl 0974.17017
[29] V.Turaev, Quantum invariants of knots and 3‐manifolds (De Gruyter, Berlin, 1994). · Zbl 0812.57003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.