×

A de-singularized meshfree approach to default probability estimation under a regime-switching synchronous-jump tempered stable Lévy model. (English) Zbl 1521.91385

MSC:

91G60 Numerical methods (including Monte Carlo methods)
60G51 Processes with independent increments; Lévy processes
62P05 Applications of statistics to actuarial sciences and financial mathematics
65D12 Numerical radial basis function approximation
91G40 Credit risk

Software:

Matlab; QRM
Full Text: DOI

References:

[1] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative risk management: Concepts, techniques and tools (2015), Princeton University Press · Zbl 1337.91003
[2] Fong, H. G., The credit market handbook: advanced modeling issues, vol. 340 (2006), John Wiley & Sons
[3] Duffie, D.; Singleton, K. J., Credit risk: pricing, measurement, and management (2012), Princeton University Press
[4] Modigliani, F.; Miller, M. H., The cost of capital, corporation finance and the theory of investment, Am Econ Rev, 48, 3, 261-297 (1958)
[5] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J Polit Econ, 81, 3, 637-654 (1973) · Zbl 1092.91524
[6] Merton, R. C., On the pricing of corporate debt: The risk structure of interest rates, J Finance, 29, 2, 449-470 (1974)
[7] Sundaresan, S., A review of Merton’s model of the firm’s capital structure with its wide applications, Annu Rev Financ Econ, 5, 1, 21-41 (2013)
[8] Fiorani, F.; Luciano, E.; Semeraro, P., Single and joint default in a structural model with purely discontinuous asset prices, Quant Finance, 10, 3, 249-263 (2010) · Zbl 1202.91336
[9] Siu, T. K.; Erlwein, C.; Mamon, R. S., The pricing of credit default swaps under a Markov-modulated Merton’s structural model, N Am Actuar J, 12, 1, 18-46 (2008) · Zbl 1481.91211
[10] Elliott, R.; Chan, L.; Siu, T., Option pricing and esscher transform under regime switching, Ann Finance, 423-432 (2005) · Zbl 1233.91270
[11] Hainaut, D.; Colwell, D. B., A structural model for credit risk with switching processes and synchronous jumps, Eur J Finance, 22, 11, 1040-1062 (2016)
[12] Chourdakis, K., Switching Lévy models in continuous time: Finite distributions and option pricing, Working paper (2005), University of Essex, Centre for Computational Finance and Economic Agents (CCFEA)
[13] Bastani, A. F.; Ahmadi, Z.; Damircheli, D., A radial basis collocation method for pricing American options under regime-switching jump-diffusion models, Appl Numer Math, 65, 79-90 (2013) · Zbl 1258.91208
[14] Lee, Y., Financial options pricing with regime-switching jump-diffusions, Comput Math Appl, 68, 3, 392-404 (2014) · Zbl 1369.91192
[15] Rambeerich, N.; Pantelous, A. A., A high order finite element scheme for pricing options under regime switching jump diffusion processes, J Comput Appl Math, 300, 83-96 (2016) · Zbl 1331.91194
[16] Tonfack, P. A.A., Modeling in finance and insurance with Levy-Itö driven dynamic processes under semi markov-type switching regimes and time domains (2017), University of South Florida, [Ph.D. thesis]
[17] Hainaut, D.; Colwell, D. B., A structural model for credit risk with switching processes and synchronous jumps, Eur J Finance, 22, 11, 1040-1062 (2016)
[18] Jackson KR, Jaimungal S, Surkov V. Option pricing with regime switching Lévy processes using Fourier space time stepping. In: Proc. 4th IASTED intern. conf. financial engin. applic. 2007, p. 92-7.
[19] Jackson, K. R.; Jaimungal, S.; Surkov, V., Fourier space time-stepping for option pricing with Lévy models, J Comput Finance, 12, 2, 1-29 (2008) · Zbl 1175.91181
[20] Sato, K.-I., Lévy processes and infinitely divisible distributions (1999), Cambridge University Press · Zbl 0973.60001
[21] Küchler, U.; Tappe, S., Tempered stable distributions and processes, Stochastic Process Appl, 123, 12, 4256-4293 (2013) · Zbl 1352.60021
[22] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., The fine structure of asset returns: An empirical investigation, J Bus, 75, 2, 305-332 (2002)
[23] Madan, D. B.; Seneta, E., The variance gamma (VG) model for share market returns, J Bus, 511-524 (1990)
[24] Madan, D. B., Purely discontinuous asset price processes, (Option pricing, interest rates and risk management (2001), Cambrige University Press), 105-153 · Zbl 1005.91047
[25] Lee, A.; Lee, Y., Comparison of numerical methods for option pricing under the CGMY model, J. Chungcheong Math Soc, 29, 3, 503-508 (2016)
[26] Revuz, D.; Yor, M., Continuous martingales and brownian motion, vol. 293 (2013), Springer Science & Business Media
[27] Bianchi, M. L.; Rachev, S. T.; Kim, Y. S.; Fabozzi, F. J., Tempered stable distributions and processes in finance: numerical analysis, (Mathematical and statistical methods for actuarial sciences and finance (2010), Springer), 33-42
[28] Rachev, S. T.; Kim, Y. S.; Bianchi, M. L.; Fabozzi, F. J., Financial models with Lévy processes and volatility clustering, vol. 187 (2011), John Wiley & Sons · Zbl 1217.91003
[29] Tankov, P., Financial modelling with jump processes (2003), Chapman and Hall/CRC
[30] Küchler, U.; Tappe, S., Bilateral gamma distributions and processes in financial mathematics, Stochastic Process Appl, 118, 2, 261-283 (2008) · Zbl 1133.62089
[31] Almendral, A.; Oosterlee, C. W., Accurate evaluation of European and American options under the CGMY process, SIAM J Sci Comput, 29, 1, 93-117 (2007) · Zbl 1151.91473
[32] Hirsa, A., Computational methods in finance (2012), CRC Press
[33] Cont, R.; Voltchkova, E., A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J Numer Anal, 43, 4, 1596-1626 (2005) · Zbl 1101.47059
[34] Brummelhuis, R.; Chan, R. T., A radial basis function scheme for option pricing in exponential Levy models, Appl Math Finance, 21, 3, 238-269 (2014) · Zbl 1395.91433
[35] Itkin, A., Pricing derivatives under Lévy models, vol. 12 (2017), Springer · Zbl 1419.91002
[36] Damircheli D, Bhatia M. Solution Approaches and Sensitivity Analysis of Variational Inequalities. In: AIAA scitech 2019 forum. 2019, p. 0977.
[37] Ballestra, L. V.; Pacelli, G., A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications, Eng Anal Bound Elem, 36, 11, 1546-1554 (2012) · Zbl 1352.65385
[38] Ballestra, L. V.; Pacelli, G., Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions, Eng Anal Bound Elem, 35, 9, 1075-1084 (2011) · Zbl 1259.65157
[39] Guardasoni, C.; Sanfelici, S., Fast numerical pricing of barrier options under stochastic volatility and jumps, SIAM J Appl Math, 76, 1, 27-57 (2016) · Zbl 1329.91139
[40] La Chioma, C., Integro-differential problems arising in pricing derivatives in jump-diffusion markets (2003), (Roma, 2003-2004)
[41] Surkov, V., Option pricing using fourier space time-stepping framework (2009), University of Toronto, [Ph.D. thesis]
[42] Fasshauer, G. E., Meshfree approximation methods with MATLAB, vol. 6 (2007), World Scientific · Zbl 1123.65001
[43] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math Comput Simulation, 79, 3, 700-715 (2008) · Zbl 1155.65379
[44] Kormann, K.; Larsson, E., A Galerkin radial basis function method for the Schrödinger equation, SIAM J Sci Comput, 35, 6, 2832-2855 (2013) · Zbl 1287.65079
[45] Sarra, S. A., A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs, Numer Methods Partial Differential Equations, 24, 2, 670-686 (2008) · Zbl 1135.65386
[46] Ebrahimijahan, A.; Dehghan, M.; Abbaszadeh, M., Simulation of maxwell equation based on an ADI approach and integrated radial basis function-generalized moving least squares (IRBF-GMLS) method with reduced order algorithm based on proper orthogonal decomposition, Eng Anal Bound Elem, 143, 397-417 (2022) · Zbl 1521.78016
[47] Kazemi, S.-M.-M.; Dehghan, M.; Foroush Bastani, A., On a new family of radial basis functions: Mathematical analysis and applications to option pricing, J Comput Appl Math, 328, 75-100 (2018) · Zbl 1372.65283
[48] Shirzadi, M.; Dehghan, M.; Bastani, A. F., On the pricing of multi-asset options under jump-diffusion processes using meshfree moving least-squares approximation, Commun Nonlinear Sci Numer Simul, 84, Article 105160 pp. (2020) · Zbl 1463.91203
[49] Brémaud, P., Markov chains: Gibbs fields, monte carlo simulation and queues (1999), Springer-Verlag · Zbl 0949.60009
[50] Papantaleon, A., An introduction to Lévy processes with applications in finance (2000), University of Freiburg
[51] Rosiński, J., Tempering stable processes, Stochastic Process Appl, 117, 6, 677-707 (2007) · Zbl 1118.60037
[52] Boyarchenko, S. I.; Levendorskiǐ, S. Z., Option pricing for truncated Lévy processes, Int J Theor Appl Finance, 3, 03, 549-552 (2000) · Zbl 0973.91037
[53] Koponen, I., Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys Rev E, 52, 1, 1197 (1995)
[54] Guo, X.; Jarrow, R. A.; Zeng, Y., Modeling the recovery rate in a reduced form model, Math Finance, 19, 1, 73-97 (2009) · Zbl 1155.91383
[55] Merton, R. C., Option pricing when underlying stock returns are discontinuous, J Financ Econ, 3, 1-2, 125-144 (1976) · Zbl 1131.91344
[56] Kou, S. G., A jump-diffusion model for option pricing, Manage Sci, 48, 8, 1086-1101 (2002) · Zbl 1216.91039
[57] Bornemann, F. A., Adaptive multilevel discretization in time and space for parabolic partial differential equationsBericht TR 89-07 (1989), Konrad-Zuse-Zentrum Berlin
[58] Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs, Comput Math Appl, 43, 3-5, 423-438 (2002) · Zbl 0999.65136
[59] Bastani, A. F.; Dastgerdi, M. V.; Mighani, A., On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models, Commun Nonlinear Sci Numer Simul, 59, 88-104 (2018) · Zbl 1461.91347
[60] Bochner, S., Harmonic analysis and the theory of probability (1955), University of California Press · Zbl 0068.11702
[61] Buescu, J.; Paixão, A. C., On differentiability and analyticity of positive definite functions, J Math Anal Appl, 375, 1, 336-341 (2011) · Zbl 1215.42015
[62] Massa, E.; Peron, A.; Piantella, A., Estimates on the derivatives and analyticity of positive definite functions on \(\mathbb{R}^m\), Anal Math, 43, 1, 89-98 (2017) · Zbl 1399.42025
[63] Wrede, R.; Spiegel, M., Schaum’s outline of advanced calculus (2002), McGraw-Hill Education
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.