×

On the double copy for spinning matter. (English) Zbl 1521.83050

Summary: We explore various tree-level double copy constructions for amplitudes including massive particles with spin. By working in general dimensions, we use that particles with spins \(s \leq 2\) are fundamental to argue that the corresponding double copy relations partially follow from compactification of their massless counterparts. This massless origin fixes the coupling of gluons, dilatons and axions to matter in a characteristic way (for instance fixing the gyromagnetic ratio), whereas the graviton couples universally reflecting the equivalence principle. For spin-1 matter we conjecture all-order Lagrangians reproducing the interactions with up to two massive lines and we test them in a classical setup, where the massive lines represent spinning compact objects such as black holes. We also test the amplitudes via CHY formulae for both bosonic and fermionic integrands. At five points, we show that by applying generalized gauge transformations one can obtain a smooth transition from quantum to classical BCJ double copy relations for radiation, thereby providing a QFT derivation for the latter. As an application, we show how the theory arising in the classical double copy of W.D. Goldberger and A.K. Ridgway [Phys. Rev. D (97) 8, 085019 (2018; https://doi.org/10.1103/PhysRevD.97.085019)] can be naturally identified with a certain compactification of \(\mathcal{N} = 4\) Supergravity.

MSC:

83C50 Electromagnetic fields in general relativity and gravitational theory
83C57 Black holes
81U05 \(2\)-body potential quantum scattering theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
83C45 Quantization of the gravitational field

References:

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[2] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[3] Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
[4] Luna, A., Perturbative spacetimes from Yang-Mills theory, JHEP, 04, 069 (2017) · Zbl 1378.83012
[5] Monteiro, R.; O’Connell, D., The kinematic algebras from the scattering equations, JHEP, 03, 110 (2014) · Zbl 1333.81421
[6] Luna, A.; Monteiro, R.; O’Connell, D.; White, CD, The classical double copy for Taub-NUT spacetime, Phys. Lett. B, 750, 272 (2015) · Zbl 1364.83005
[7] Cardoso, G.; Nagy, S.; Nampuri, S., Multi-centered N = 2 BPS black holes: a double copy description, JHEP, 04, 037 (2017) · Zbl 1378.83032
[8] Cardoso, GL; Nagy, S.; Nampuri, S., A double copy for N = 2 supergravity: a linearised tale told on-shell, JHEP, 10, 127 (2016) · Zbl 1390.83383
[9] Carrillo-González, M.; Penco, R.; Trodden, M., The classical double copy in maximally symmetric spacetimes, JHEP, 04, 028 (2018) · Zbl 1390.81624
[10] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE]. · Zbl 1476.83027
[11] M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical double copy in three spacetime dimensions, JHEP07 (2019) 167 [arXiv:1904.11001] [INSPIRE]. · Zbl 1418.83025
[12] Arkani-Hamed, N.; Huang, Y-T; O’Connell, D., Kerr black holes as elementary particles, JHEP, 01, 046 (2020) · Zbl 1434.83049
[13] Monteiro, R.; O’Connell, D., The kinematic algebra from the self-dual sector, JHEP, 07, 007 (2011) · Zbl 1298.81401
[14] Bjerrum-Bohr, NEJ; Damgaard, PH; Monteiro, R.; O’Connell, D., Algebras for amplitudes, JHEP, 06, 061 (2012) · Zbl 1397.81135
[15] Cho, W.; Lee, K., Heterotic Kerr-Schild double field theory and classical double copy, JHEP, 07, 030 (2019) · Zbl 1418.83058
[16] Chen, G.; Johansson, H.; Teng, F.; Wang, T., On the kinematic algebra for BCJ numerators beyond the MHV sector, JHEP, 11, 055 (2019)
[17] A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett.113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].
[18] A. Anastasiou, L. Borsten, M.J. Duff, S. Nagy and M. Zoccali, Gravity as gauge theory squared: a ghost story, Phys. Rev. Lett.121 (2018) 211601 [arXiv:1807.02486] [INSPIRE].
[19] Mizera, S.; Skrzypek, B., Perturbiner methods for effective field theories and the double copy, JHEP, 10, 018 (2018) · Zbl 1402.81193
[20] Luna, A.; Nicholson, I.; O’Connell, D.; White, CD, Inelastic black hole scattering from charged scalar amplitudes, JHEP, 03, 044 (2018) · Zbl 1388.83477
[21] Luna, A.; Monteiro, R.; Nicholson, I.; O’Connell, D.; White, CD, The double copy: Bremsstrahlung and accelerating black holes, JHEP, 06, 023 (2016) · Zbl 1388.83025
[22] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
[23] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
[24] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
[25] D. Chester, Radiative double copy for Einstein-Yang-Mills theory, Phys. Rev. D97 (2018) 084025 [arXiv:1712.08684] [INSPIRE].
[26] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation, and the classical double copy, Phys. Rev. D97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
[27] J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys. Rev. D97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].
[28] Shen, C-H, Gravitational radiation from color-kinematics duality, JHEP, 11, 162 (2018) · Zbl 1404.83022
[29] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
[30] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO, Phys. Rev. D100 (2019) 086006 [arXiv:1906.05875] [INSPIRE].
[31] A.P.V. and A. Manu, Classical double copy from color kinematics duality: a proof in the soft limit, Phys. Rev. D101 (2020) 046014 [arXiv:1907.10021] [INSPIRE].
[32] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Black hole binary dynamics from the double copy and effective theory, JHEP, 10, 206 (2019) · Zbl 1427.83035
[33] Chung, M-Z; Huang, Y-T; Kim, J-W, Classical potential for general spinning bodies, JHEP, 09, 074 (2020) · Zbl 1454.83010
[34] Johansson, H.; Ochirov, A., Pure gravities via color-kinematics duality for fundamental matter, JHEP, 11, 046 (2015) · Zbl 1388.83017
[35] Johansson, H.; Ochirov, A., Color-kinematics duality for QCD amplitudes, JHEP, 01, 170 (2016) · Zbl 1390.81697
[36] de la Cruz, L.; Kniss, A.; Weinzierl, S., Proof of the fundamental BCJ relations for QCD amplitudes, JHEP, 09, 197 (2015) · Zbl 1390.81732
[37] L. de la Cruz, A. Kniss and S. Weinzierl, Double copies of fermions as matter that interacts only gravitationally, Phys. Rev. Lett.116 (2016) 201601 [arXiv:1601.04523] [INSPIRE].
[38] Brown, RW; Naculich, SG, KLT-type relations for QCD and bicolor amplitudes from color-factor symmetry, JHEP, 03, 057 (2018) · Zbl 1388.81920
[39] J. Plefka and W. Wormsbecher, New relations for graviton-matter amplitudes, Phys. Rev. D98 (2018) 026011 [arXiv:1804.09651] [INSPIRE].
[40] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge theories, Phys. Rev. Lett.117 (2016) 011603 [arXiv:1512.09130] [INSPIRE].
[41] Anastasiou, A.; Borsten, L.; Duff, MJ; Marrani, A.; Nagy, S.; Zoccali, M., Are all supergravity theories Yang-Mills squared?, Nucl. Phys. B, 934, 606 (2018) · Zbl 1395.83116
[42] Chiodaroli, M.; Jin, Q.; Roiban, R., Color/kinematics duality for general Abelian orbifolds of N = 4 super Yang-Mills theory, JHEP, 01, 152 (2014) · Zbl 1333.81391
[43] Y.-T. Huang and H. Johansson, Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett.110 (2013) 171601 [arXiv:1210.2255] [INSPIRE].
[44] Huang, Y-T; Johansson, H.; Lee, S., On three-algebra and bi-fundamental matter amplitudes and integrability of supergravity, JHEP, 11, 050 (2013)
[45] Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R., Spontaneously broken Yang-Mills-Einstein supergravities as double copies, JHEP, 06, 064 (2017) · Zbl 1380.83279
[46] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Gauged supergravities and spontaneous supersymmetry breaking from the double copy construction, Phys. Rev. Lett.120 (2018) 171601 [arXiv:1710.08796] [INSPIRE].
[47] Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality, double copy and soft theorems, arXiv:1903.12419 [INSPIRE].
[48] Neill, D.; Rothstein, IZ, Classical space-times from the S matrix, Nucl. Phys. B, 877, 177 (2013) · Zbl 1284.83052
[49] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering amplitudes and the conservative Hamiltonian for binary systems at third post-Minkowskian order, Phys. Rev. Lett.122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].
[50] Guevara, A.; Ochirov, A.; Vines, J., Scattering of spinning black holes from exponentiated soft factors, JHEP, 09, 056 (2019) · Zbl 1423.83030
[51] Chung, M-Z; Huang, Y-T; Kim, J-W; Lee, S., The simplest massive S-matrix: from minimal coupling to black holes, JHEP, 04, 156 (2019) · Zbl 1415.83014
[52] A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from minimal-coupling amplitudes, Phys. Rev. D100 (2019) 104024 [arXiv:1906.10071] [INSPIRE].
[53] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, Scattering amplitudes for all masses and spins, JHEP, 11, 070 (2021) · Zbl 1521.81418
[54] S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. · Zbl 0144.23702
[55] J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE]. · Zbl 1409.83116
[56] B.R. Holstein, Factorization in graviton scattering and the ‘natural’ value of the g-factor, gr-qc/0607058 [INSPIRE].
[57] B.R. Holstein, How large is the ‘natural’ magnetic moment?, Am. J. Phys.74 (2006) 1104 [hep-ph/0607187] [INSPIRE].
[58] Bjerrum-Bohr, NEJ; Donoghue, JF; Vanhove, P., On-shell techniques and universal results in quantum gravity, JHEP, 02, 111 (2014) · Zbl 1333.83043
[59] S. Weinberg, Dynamic and algebraic symmetries, in Lectures on elementary particles and quantum field theory, volume 1, S. Deser, M. Grisaru and H. Pendleton eds., MIT Press, Cambridge, MA, U.S.A. (1970), pg. 283.
[60] S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree-level gyromagnetic ratio of elementary particles, Phys. Rev. D46 (1992) 3529 [INSPIRE].
[61] Cucchieri, A.; Porrati, M.; Deser, S., Tree level unitarity constraints on the gravitational couplings of higher spin massive fields, Phys. Rev. D, 51, 4543 (1995)
[62] B.A. Campbell, N. Kaloper and K.A. Olive, Classical hair for Kerr-Newman black holes in string gravity, Phys. Lett. B285 (1992) 199 [INSPIRE].
[63] Campbell, BA; Kaloper, N.; Madden, R.; Olive, KA, Physical properties of four-dimensional superstring gravity black hole solutions, Nucl. Phys. B, 399, 137 (1993)
[64] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D43 (1991) 3140 [Erratum ibid.45 (1992) 3888] [INSPIRE].
[65] G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys. B207 (1982) 337 [INSPIRE].
[66] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].
[67] Cachazo, F.; He, S.; Yuan, EY, Scattering of massless particles: scalars, gluons and gravitons, JHEP, 07, 033 (2014) · Zbl 1391.81198
[68] Cachazo, F.; He, S.; Yuan, EY, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP, 01, 121 (2015) · Zbl 1388.81917
[69] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. · Zbl 1388.83196
[70] Cachazo, F.; Guevara, A.; Heydeman, M.; Mizera, S.; Schwarz, JH; Wen, C., The S matrix of 6D super Yang-Mills and maximal supergravity from rational maps, JHEP, 09, 125 (2018) · Zbl 1398.81255
[71] Y. Geyer and L. Mason, Polarized scattering equations for 6D superamplitudes, Phys. Rev. Lett.122 (2019) 101601 [arXiv:1812.05548] [INSPIRE].
[72] Schwarz, JH; Wen, C., Unified formalism for 6D superamplitudes based on a symplectic Grassmannian, JHEP, 08, 125 (2019) · Zbl 1421.81145
[73] R.-G. Cai and Y.S. Myung, Black holes in the Brans-Dicke-Maxwell theory, Phys. Rev. D56 (1997) 3466 [gr-qc/9702037] [INSPIRE].
[74] Cremmer, E.; Scherk, J.; Ferrara, S., SU(4) invariant supergravity theory, Phys. Lett. B, 74, 61 (1978)
[75] A.K. Das, SO(4) invariant extended supergravity, Phys. Rev. D15 (1977) 2805 [INSPIRE].
[76] Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 supergravity amplitudes from gauge theory at one loop, Phys. Rev. D84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].
[77] Boucher-Veronneau, C.; Dixon, LJ, N ≥ 4 supergravity amplitudes from gauge theory at two loops, JHEP, 12, 046 (2011) · Zbl 1306.81078
[78] Kosower, DA; Maybee, B.; O’Connell, D., Amplitudes, observables, and classical scattering, JHEP, 02, 137 (2019) · Zbl 1411.81217
[79] Johansson, H.; Ochirov, A., Double copy for massive quantum particles with spin, JHEP, 09, 040 (2019) · Zbl 1423.81183
[80] Bjerrum-Bohr, NEJ; Cristofoli, A.; Damgaard, PH; Gomez, H., Scalar-graviton amplitudes, JHEP, 11, 148 (2019) · Zbl 1437.83034
[81] Deser, S.; Waldron, A., Inconsistencies of massive charged gravitating higher spins, Nucl. Phys. B, 631, 369 (2002) · Zbl 0995.83023
[82] H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
[83] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423 (1999) · Zbl 0953.83006
[84] N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D82 (2010) 107702 [arXiv:1005.4367] [INSPIRE].
[85] Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R., Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy, JHEP, 07, 002 (2017) · Zbl 1380.83280
[86] Naculich, SG, CHY representations for gauge theory and gravity amplitudes with up to three massive particles, JHEP, 05, 050 (2015) · Zbl 1388.83133
[87] R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev. D73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
[88] R.A. Porto and I.Z. Rothstein, The hyperfine Einstein-Infeld-Hoffmann potential, Phys. Rev. Lett.97 (2006) 021101 [gr-qc/0604099] [INSPIRE].
[89] Levi, M.; Steinhoff, J., Spinning gravitating objects in the effective field theory in the post-Newtonian scheme, JHEP, 09, 219 (2015) · Zbl 1388.83031
[90] Levi, M.; Steinhoff, J., Leading order finite size effects with spins for inspiralling compact binaries, JHEP, 06, 059 (2015)
[91] M. Levi, Effective field theories of post-Newtonian gravity: a comprehensive review, Rept. Prog. Phys.83 (2020) 075901 [arXiv:1807.01699] [INSPIRE].
[92] R.A. Porto and I.Z. Rothstein, Spin(1)Spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion, Phys. Rev. D78 (2008) 044012 [Erratum ibid.81 (2010) 029904] [arXiv:0802.0720] [INSPIRE].
[93] R.A. Porto and I.Z. Rothstein, Next to leading order Spin(1)Spin(1) effects in the motion of inspiralling compact binaries, Phys. Rev. D78 (2008) 044013 [Erratum ibid.81 (2010) 029905] [arXiv:0804.0260] [INSPIRE].
[94] S. Cotogno, C. Lorcé and P. Lowdon, Poincaré constraints on the gravitational form factors for massive states with arbitrary spin, Phys. Rev. D100 (2019) 045003 [arXiv:1905.11969] [INSPIRE].
[95] P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].
[96] Pfister, H.; King, M., The gyromagnetic factor in electrodynamics, quantum theory and general relativity, Class. Quant. Grav., 20, 205 (2002) · Zbl 1014.83014
[97] Bekaert, X.; Boulanger, N., The unitary representations of the Poincaré group in any spacetime dimension, SciPost Phys. Lect. Notes, 30, 1 (2021)
[98] G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev.186 (1969) 1337 [INSPIRE].
[99] S. Deser, V. Pascalutsa and A. Waldron, Massive spin 3/2 electrodynamics, Phys. Rev. D62 (2000) 105031 [hep-th/0003011] [INSPIRE].
[100] Cortese, I.; Rahman, R.; Sivakumar, M., Consistent non-minimal couplings of massive higher-spin particles, Nucl. Phys. B, 879, 143 (2014) · Zbl 1284.81109
[101] Porrati, M.; Rahman, R.; Sagnotti, A., String theory and the Velo-Zwanziger problem, Nucl. Phys. B, 846, 250 (2011) · Zbl 1208.81171
[102] C. Lorce, Electromagnetic properties for arbitrary spin particles. Part 1. Electromagnetic current and multipole decomposition, arXiv:0901.4199 [INSPIRE].
[103] C. Lorce, Electromagnetic properties for arbitrary spin particles: natural electromagnetic moments from light-cone arguments, Phys. Rev. D79 (2009) 113011 [arXiv:0901.4200] [INSPIRE].
[104] Guevara, A., Holomorphic classical limit for spin effects in gravitational and electromagnetic scattering, JHEP, 04, 033 (2019) · Zbl 1415.81107
[105] F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
[106] V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].
[107] Maybee, B.; O’Connell, D.; Vines, J., Observables and amplitudes for spinning particles and black holes, JHEP, 12, 156 (2019) · Zbl 1431.83101
[108] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B121 (1977) 77 [INSPIRE].
[109] Cheung, C.; Shen, C-H; Wen, C., Unifying relations for scattering amplitudes, JHEP, 02, 095 (2018) · Zbl 1387.81264
[110] Cheung, C.; Remmen, GN; Shen, C-H; Wen, C., Pions as gluons in higher dimensions, JHEP, 04, 129 (2018) · Zbl 1390.81291
[111] Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R., Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP, 01, 081 (2015) · Zbl 1388.83772
[112] F.J. Belinfante, Intrinsic magnetic moment of elementary particles of spin \(\frac{3}{2} \), Phys. Rev.92 (1953) 997 [INSPIRE]. · Zbl 0051.22104
[113] J. Polchinski, String theory: volume 1, an introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (2011).
[114] Frau, M.; Pesando, I.; Sciuto, S.; Lerda, A.; Russo, R., Scattering of closed strings from many D-branes, Phys. Lett. B, 400, 52 (1997)
[115] Sheykhi, A.; Alavirad, H., Topological black holes in Brans-Dicke-Maxwell theory, Int. J. Mod. Phys. D, 18, 1773 (2009) · Zbl 1181.83169
[116] Horne, JH; Horowitz, GT, Rotating dilaton black holes, Phys. Rev. D, 46, 1340 (1992)
[117] C. Pacilio, Scalar charge of black holes in Einstein-Maxwell-dilaton theory, Phys. Rev. D98 (2018) 064055 [arXiv:1806.10238] [INSPIRE].
[118] T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev. D88 (2013) 014020 [arXiv:1304.7809] [INSPIRE].
[119] T. Melia, Getting more flavor out of one-flavor QCD, Phys. Rev. D89 (2014) 074012 [arXiv:1312.0599] [INSPIRE].
[120] Melia, T., Proof of a new colour decomposition for QCD amplitudes, JHEP, 12, 107 (2015) · Zbl 1388.81132
[121] Ochirov, A.; Page, B., Multi-quark colour decompositions from unitarity, JHEP, 10, 058 (2019)
[122] Kälin, G.; Mogull, G.; Ochirov, A., Two-loop N = 2 SQCD amplitudes with external matter from iterated cuts, JHEP, 07, 120 (2019) · Zbl 1418.81087
[123] Johansson, H.; Kälin, G.; Mogull, G., Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP, 09, 019 (2017) · Zbl 1382.83120
[124] Kälin, G., Cyclic Mario worlds — color-decomposition for one-loop QCD, JHEP, 04, 141 (2018)
[125] B.R. Holstein and A. Ross, Spin effects in long range electromagnetic scattering, arXiv:0802.0715 [INSPIRE].
[126] Monteiro, R.; O’Connell, D.; White, CD, Black holes and the double copy, JHEP, 12, 056 (2014) · Zbl 1333.83048
[127] Damgaard, PH; Haddad, K.; Helset, A., Heavy black hole effective theory, JHEP, 11, 070 (2019) · Zbl 1429.83034
[128] B.R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE].
[129] C. Cheung, I.Z. Rothstein and M.P. Solon, From scattering amplitudes to classical potentials in the post-Minkowskian expansion, Phys. Rev. Lett.121 (2018) 251101 [arXiv:1808.02489] [INSPIRE].
[130] Emond, WT; Moynihan, N., Scattering amplitudes, black holes and leading singularities in cubic theories of gravity, JHEP, 12, 019 (2019) · Zbl 1431.83048
[131] Brandhuber, A.; Travaglini, G., On higher-derivative effects on the gravitational potential and particle bending, JHEP, 01, 010 (2020) · Zbl 1434.83033
[132] Freedman, DZ; Proeyen, PAV, Supergravity (2012), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 1245.83001
[133] H. Nicolai and P.K. Townsend, N = 3 supersymmetry multiplets with vanishing trace anomaly: building blocks of the N > 3 supergravities, Phys. Lett. B98 (1981) 257 [INSPIRE].
[134] He, S.; Zhang, Y., Connected formulas for amplitudes in standard model, JHEP, 03, 093 (2017) · Zbl 1377.83122
[135] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
[136] S. Mizera, Aspects of scattering amplitudes and moduli space localization, Ph.D. thesis, Inst. Advanced Study, Princeton, NJ, U.S.A. (2020) [arXiv:1906.02099] [INSPIRE]. · Zbl 1457.81067
[137] Heydeman, M.; Schwarz, JH; Wen, C., M5-brane and D-brane scattering amplitudes, JHEP, 12, 003 (2017) · Zbl 1383.81166
[138] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189 (2004) · Zbl 1105.81061
[139] Roiban, R.; Spradlin, M.; Volovich, A., A googly amplitude from the B model in twistor space, JHEP, 04, 012 (2004)
[140] R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D70 (2004) 026009 [hep-th/0403190] [INSPIRE].
[141] Y.-T. Huang, Non-chiral S-matrix of N = 4 super Yang-Mills, arXiv:1104.2021 [INSPIRE].
[142] Dixon, LJ; Henn, JM; Plefka, J.; Schuster, T., All tree-level amplitudes in massless QCD, JHEP, 01, 035 (2011) · Zbl 1214.81297
[143] Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in four dimensions, Phys. Rev. Lett.113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.