×

Pure gravities via color-kinematics duality for fundamental matter. (English) Zbl 1388.83017

Summary: We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in the supergravity theories. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83E50 Supergravity
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[2] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. · doi:10.1103/PhysRevLett.105.061602
[3] J.J. Carrasco and H. Johansson, Five-point amplitudes \[inN=4 \mathcal{N}=4\] super-Yang-Mills theory \[andN=8 \mathcal{N}=8\] supergravity, Phys. Rev.D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].
[4] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev.D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].
[5] Z. Bern, C. Boucher-Veronneau and H. Johansson, \[N≥4 \mathcal{N}\ge 4\] supergravity amplitudes from gauge theory at one loop, Phys. Rev.D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].
[6] C. Boucher-Veronneau and L.J. Dixon, \[N≥4 \mathcal{N}\ge 4\] supergravity amplitudes from gauge theory at two loops, JHEP12 (2011) 046 [arXiv:1110.1132] [INSPIRE]. · Zbl 1306.81078 · doi:10.1007/JHEP12(2011)046
[7] Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of three-loop four-point divergences \[inN=4 \mathcal{N}=4\] supergravity, Phys. Rev. Lett.108 (2012) 201301 [arXiv:1202.3423] [INSPIRE]. · doi:10.1103/PhysRevLett.108.201301
[8] Z. Bern, J.J.M. Carrasco, H. Johansson and R. Roiban, Five-loop four-point amplitude \[ofN=4 \mathcal{N}=4\] super-Yang-Mills theory, Phys. Rev. Lett.109 (2012) 241602 [arXiv:1207.6666] [INSPIRE]. · doi:10.1103/PhysRevLett.109.241602
[9] Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure, Phys. Rev.D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].
[10] J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupledN≤\[4 \mathcal{N}\le 4\] supergravity, JHEP03 (2013) 056 [arXiv:1212.1146] [INSPIRE]. · Zbl 1342.83455 · doi:10.1007/JHEP03(2013)056
[11] J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix \[ofN=4 \mathcal{N}=4\] supergravity, JHEP07 (2013) 029 [arXiv:1303.6219] [INSPIRE]. · Zbl 1342.83454 · doi:10.1007/JHEP07(2013)029
[12] Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev.D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].
[13] Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties \[ofN=4 \mathcal{N}=4\] supergravity at four loops, Phys. Rev. Lett.111 (2013) 231302 [arXiv:1309.2498] [INSPIRE]. · doi:10.1103/PhysRevLett.111.231302
[14] R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP02 (2013) 063 [arXiv:1211.7028] [INSPIRE]. · Zbl 1342.81551 · doi:10.1007/JHEP02(2013)063
[15] Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, Phys. Rev.D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
[16] R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP07 (2011) 007 [arXiv:1105.2565] [INSPIRE]. · Zbl 1298.81401 · doi:10.1007/JHEP07(2011)007
[17] R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP04 (2013) 107 [arXiv:1301.4165] [INSPIRE]. · doi:10.1007/JHEP04(2013)107
[18] R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP03 (2014) 110 [arXiv:1311.1151] [INSPIRE]. · Zbl 1333.81421 · doi:10.1007/JHEP03(2014)110
[19] Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev.D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
[20] M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP07 (2013) 111 [arXiv:1306.2975] [INSPIRE]. · Zbl 1342.81321 · doi:10.1007/JHEP07(2013)111
[21] N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett.103 (2009) 161602 [arXiv:0907.1425] [INSPIRE]. · doi:10.1103/PhysRevLett.103.161602
[22] S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE]. · Zbl 1284.81245
[23] S.-H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP06 (2010) 071 [Erratum ibid.04 (2011) 114] [arXiv:1003.1732] [INSPIRE]. · Zbl 1288.81150
[24] C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP07 (2011) 092 [arXiv:1104.5224] [INSPIRE]. · Zbl 1298.81319 · doi:10.1007/JHEP07(2011)092
[25] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys.B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE]. · Zbl 1282.81152 · doi:10.1016/j.nuclphysb.2013.04.022
[26] C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP08 (2014) 099 [arXiv:1203.6215] [INSPIRE]. · doi:10.1007/JHEP08(2014)099
[27] J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortschr. Phys.61 (2013) 812 [arXiv:1304.7267] [INSPIRE]. · Zbl 1338.81316 · doi:10.1002/prop.201300019
[28] A. Ochirov and P. Tourkine, BCJ duality and double copy in the closed string sector, JHEP05 (2014) 136 [arXiv:1312.1326] [INSPIRE]. · doi:10.1007/JHEP05(2014)136
[29] S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys.B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE]. · Zbl 1284.81245 · doi:10.1016/j.nuclphysb.2014.02.005
[30] C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP07 (2014) 153 [arXiv:1404.4986] [INSPIRE]. · doi:10.1007/JHEP07(2014)153
[31] T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett.108 (2012) 231601 [arXiv:1203.0562] [INSPIRE]. · doi:10.1103/PhysRevLett.108.231601
[32] Y.-t. Huang and H. Johansson, Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett.110 (2013) 171601 [arXiv:1210.2255] [INSPIRE]. · doi:10.1103/PhysRevLett.110.171601
[33] Y.-t. Huang, H. Johansson and S. Lee, On three-algebra and bi-fundamental matter amplitudes and integrability of supergravity, JHEP11 (2013) 050 [arXiv:1307.2222] [INSPIRE]. · doi:10.1007/JHEP11(2013)050
[34] F. Cachazo, Fundamental BCJ relation \[inN=4 \mathcal{N}=4\] SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].
[35] F. Cachazo and Y. Geyer, A ‘twistor string’ inspired formula for tree-level scattering amplitudes \[inN=8 \mathcal{N}=8\] SUGRA, arXiv:1206.6511 [INSPIRE].
[36] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev.D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
[37] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE]. · Zbl 1391.81198 · doi:10.1007/JHEP07(2014)033
[38] M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general abelian orbifolds \[ofN=4 \mathcal{N}=4\] super Yang-Mills theory, JHEP01 (2014) 152 [arXiv:1311.3600] [INSPIRE]. · Zbl 1333.81391 · doi:10.1007/JHEP01(2014)152
[39] H. Kawai, D.C. Lewellen and S.-H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE]. · doi:10.1016/0550-3213(86)90362-7
[40] Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.B 546 (1999) 423 [hep-th/9811140] [INSPIRE]. · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[41] H. Johansson, A. Sabio Vera, E. Serna Campillo and M. Á. Vázquez-Mozo, Color-kinematics duality in multi-Regge kinematics and dimensional reduction, JHEP10 (2013) 215 [arXiv:1307.3106] [INSPIRE]. · doi:10.1007/JHEP10(2013)215
[42] Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett.84 (2000) 3531 [hep-th/9912033] [INSPIRE]. · doi:10.1103/PhysRevLett.84.3531
[43] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes \[inN=2 \mathcal{N}=2\] Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP01 (2015) 081 [arXiv:1408.0764] [INSPIRE]. · Zbl 1388.83772 · doi:10.1007/JHEP01(2015)081
[44] B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett.B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE]. · doi:10.1016/j.physletb.2010.11.011
[45] Y.-X. Chen, Y.-J. Du and B. Feng, A proof of the explicit minimal-basis expansion of tree amplitudes in gauge field theory, JHEP02 (2011) 112 [arXiv:1101.0009] [INSPIRE]. · Zbl 1294.81273 · doi:10.1007/JHEP02(2011)112
[46] Y.-J. Du, B. Feng and C.-H. Fu, BCJ relation of color scalar theory and KLT relation of gauge theory, JHEP08 (2011) 129 [arXiv:1105.3503] [INSPIRE]. · Zbl 1298.81380 · doi:10.1007/JHEP08(2011)129
[47] Z. Kunszt, Combined use of the CALKUL method and N = 1 supersymmetry to calculate QCD six-parton processes, Nucl. Phys.B 271 (1986) 333 [INSPIRE]. · doi:10.1016/0550-3213(86)90319-6
[48] V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett.B 214 (1988) 215 [INSPIRE]. · doi:10.1016/0370-2693(88)91471-2
[49] L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett.B 25 (1967) 29 [INSPIRE]. · doi:10.1016/0370-2693(67)90067-6
[50] J.M. Drummond and J.M. Henn, All tree-level amplitudes \[inN=4 \mathcal{N}=4\] SYM, JHEP04 (2009) 018 [arXiv:0808.2475] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/018
[51] L.J. Dixon, J.M. Henn, J. Plefka and T. Schuster, All tree-level amplitudes in massless QCD, JHEP01 (2011) 035 [arXiv:1010.3991] [INSPIRE]. · Zbl 1214.81297 · doi:10.1007/JHEP01(2011)035
[52] C. Reuschle and S. Weinzierl, Decomposition of one-loop QCD amplitudes into primitive amplitudes based on shuffle relations, Phys. Rev.D 88 (2013) 105020 [arXiv:1310.0413] [INSPIRE].
[53] T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev.D 88 (2013) 014020 [arXiv:1304.7809] [INSPIRE].
[54] T. Melia, Getting more flavor out of one-flavor QCD, Phys. Rev.D 89 (2014) 074012 [arXiv:1312.0599] [INSPIRE].
[55] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[56] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · doi:10.1016/0550-3213(94)00488-Z
[57] J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev.D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].
[58] M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev.D 15 (1977) 996 [INSPIRE].
[59] M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys.B 124 (1977) 81 [INSPIRE]. · doi:10.1016/0550-3213(77)90277-2
[60] S.J. Parke and T.R. Taylor, Perturbative QCD utilizing extended supersymmetry, Phys. Lett.B 157 (1985) 81 [Erratum ibid.B 174 (1986) 465] [INSPIRE].
[61] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE]. · doi:10.1016/0370-1573(91)90091-Y
[62] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys.B 362 (1991) 389 [INSPIRE]. · doi:10.1016/0550-3213(91)90567-H
[63] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in \[planarN=4 \mathcal{N}=4\] SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[64] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE]. · Zbl 0391.76060
[65] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [INSPIRE]. · doi:10.1016/0550-3213(96)00078-8
[66] Y.-t. Huang and D. McGady, Consistency conditions for gauge theory S matrices from requirements of generalized unitarity, Phys. Rev. Lett.112 (2014) 241601 [arXiv:1307.4065] [INSPIRE]. · doi:10.1103/PhysRevLett.112.241601
[67] D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys.B 433 (1995) 181 [hep-th/9408014] [INSPIRE]. · doi:10.1016/0550-3213(94)00385-R
[68] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [INSPIRE]. · doi:10.1103/PhysRevLett.70.2677
[69] P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes \[inN=4 \mathcal{N}=4\] supergravity models, Phys. Rev.D 87 (2013) 045001 [arXiv:1208.1255] [INSPIRE].
[70] M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett.B 160 (1985) 81 [INSPIRE]. · doi:10.1016/0370-2693(85)91470-4
[71] M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys.B 266 (1986) 709 [INSPIRE]. · doi:10.1016/0550-3213(86)90193-8
[72] A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys.B 378 (1992) 309 [INSPIRE].
[73] M.T. Grisaru, Two loop renormalizability of supergravity, Phys. Lett.B 66 (1977) 75 [INSPIRE]. · doi:10.1016/0370-2693(77)90617-7
[74] E. Tomboulis, On the two loop divergences of supersymmetric gravitation, Phys. Lett.B 67 (1977) 417 [INSPIRE]. · doi:10.1016/0370-2693(77)90434-8
[75] S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity, Phys. Rev. Lett.38 (1977) 527 [arXiv:1506.03757] [INSPIRE]. · doi:10.1103/PhysRevLett.38.527
[76] P.S. Howe and U. Lindström, Higher order invariants in extended supergravity, Nucl. Phys.B 181 (1981) 487 [INSPIRE]. · doi:10.1016/0550-3213(81)90537-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.