×

A discontinuous Galerkin approximation for a wall-bounded consistent three-component Cahn-Hilliard flow model. (English) Zbl 1521.76353

Summary: We present a high-order discontinuous Galerkin (DG) discretization for the three-phase Cahn-Hilliard model of [F. Boyer and C. Lapuerta, ESAIM, Math. Model. Numer. Anal. 40, No. 4, 653–687 (2006; Zbl 1173.35527)]. Study of a three component Cahn-Hilliard flow model]. In this model, consistency is ensured with an additional term in the chemical free-energy. The model considered in this work includes a wall boundary condition that allows for an arbitrary equilibrium contact angle in three-phase flows. The model is discretized with a high-order discontinuous Galerkin spectral element method that uses the symmetric interior penalty to compute the interface fluxes, and allows for unstructured meshes with curvilinear hexahedral elements. The integration in time uses a first order IMplicit-EXplicit (IMEX) method, such that the associated linear systems are decoupled for the two Cahn-Hilliard equations. Additionally, the Jacobian matrix is constant, and identical for both equations. This allows us to solve the two systems by performing only one LU factorization, with the size of the two-phase system, followed by two Gauss substitutions. Finally, we test numerically the accuracy of the scheme providing convergence analyses for two and three-dimensional cases, including the captive bubble test, the study of two bubbles in contact with a wall and the spinodal decomposition in a cube and in a curved pipe with a “T” junction.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D27 Other free boundary flows; Hele-Shaw flows

Citations:

Zbl 1173.35527

References:

[1] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 1, 146-159 (1994) · Zbl 0808.76077
[2] Adalsteinsson, D.; Sethian, J. A., A fast level set method for propagating interfaces, J Comput Phys, 118, 2, 269-277 (1995) · Zbl 0823.65137
[3] Van der Pijl, S.; Segal, A.; Vuik, C.; Wesseling, P., A mass-conserving level-set method for modelling of multi-phase flows, Int J Numer Methods Fluids, 47, 4, 339-361 (2005) · Zbl 1065.76160
[4] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J Chem Phys, 28, 2, 258-267 (1958) · Zbl 1431.35066
[5] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J Chem Phys, 31, 3, 688-699 (1959)
[6] Elliott, C. M.; Garcke, H., On the Cahn-Hilliard equation with degenerate mobility, SIAM J Math Anal, 27, 2, 404-423 (1996) · Zbl 0856.35071
[7] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc R Soc London SerA, 454, 1978, 2617-2654 (1998) · Zbl 0927.76007
[8] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput Methods Appl Mech Eng, 197, 49-50, 4333-4352 (2008) · Zbl 1194.74524
[9] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin Dyn Syst, 28, 4, 1669-1691 (2010) · Zbl 1201.65184
[10] Dong, S., An efficient algorithm for incompressible N-phase flows, J Comput Phys, 276, 691-728 (2014) · Zbl 1349.76196
[11] Dong, S., Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-angle boundary condition, J Comput Phys, 338, 21-67 (2017) · Zbl 1415.76450
[12] Gómez-Álvarez, S.; Rivero-Jiménez, A.; Rubio, G.; Manzanero, J.; Redondo, C., Novel coupled Cahn-Hilliard Navier-Stokes solver for the evaluation of oil and gas multiphase flow, BHR 19th international conference on multiphase production technology (2019), BHR Group
[13] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation, J Comput Phys, 403, 109072 (2020) · Zbl 1453.65338
[14] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible navier-stokes/cahn-hilliard system, J Comput Phys, 109363 (2020) · Zbl 07505633
[15] Manzanero, J.; Redondo, C.; Rubio, G.; Ferrer, E.; Valero, E.; Gómez-Álvarez, S., A high-order discontinuous Galerkin solver for multiphase flows, Spectral and high order methods for partial differential equations ICOSAHOM 2018 (accepted) (2020), Springer · Zbl 1484.65228
[16] Xia, Y.; Xu, Y.; Shu, C.-W., Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun Comput Phys, 5, 2-4, 821-835 (2009) · Zbl 1364.65203
[17] Shen, J.; Yang, X., Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin Ann Math Ser B, 31, 5, 743-758 (2010) · Zbl 1400.65049
[18] Boyer, F.; Lapuerta, C., Study of a three component Cahn-Hilliard flow model, ESAIM: Math Model NumerAnal, 40, 4, 653-687 (2006) · Zbl 1173.35527
[19] Boyer, F.; Minjeaud, S., Hierarchy of consistent N-component Cahn-Hilliard systems, Math Models Methods Appl Sci, 24, 14, 2885-2928 (2014) · Zbl 1308.35004
[20] Dong, S., Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and thermodynamically-consistent formulation and associated algorithm, J Comput Phys, 361, 1-49 (2018) · Zbl 1391.76804
[21] Shi, Y.; Wang, X.-P., Modeling and simulation of dynamics of three-component flows on solid surface, Jpn J Ind Appl Math, 31, 3, 611-631 (2014) · Zbl 1308.76290
[22] D. A. Kopriva, Implementing spectral methods for partial differential equations (2009), Springer Netherlands · Zbl 1172.65001
[23] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J Numer Anal, 15, 1, 152-161 (1978) · Zbl 0384.65058
[24] E. Ferrer and R. H.J. Willden, A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Computers & Fluids, 46, 1, 224-230 (2011) · Zbl 1431.76011
[25] E. Ferrer and R. H. J. Willden, A high order discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J Comput Phys, 231, 21, 7037-7056 (2012) · Zbl 1284.35311
[26] E. Ferrer, An interior penalty stabilised incompressible discontinuous Galerkin - Fourier solver for implicit large eddy simulations, J Comput Phys, 348, 754-775 (2017) · Zbl 1380.76018
[27] Manzanero, J.; Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E., The Bassi Rebay 1 scheme is a special case of the symmetric interior penalty formulation for discontinuous Galerkin discretisations with Gauss-Lobatto points, J Comput Phys, 363, 1-10 (2018) · Zbl 1398.65307
[28] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2007), Springer Science & Business Media
[29] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM J Sci Comput, 33, 5, 2560-2579 (2011) · Zbl 1255.65089
[30] Moura, R. C.; Sherwin, S. J.; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J Comput Phys, 298, 695-710 (2015) · Zbl 1349.76131
[31] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E., Dispersion-dissipation analysis for advection problems with nonconstant coefficients: applications to discontinuous Galerkin formulations, SIAM J Sci Comput, 40, 2, A747-A768 (2018) · Zbl 1453.65337
[32] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods, Comput Fluids, 104440 (2020) · Zbl 1519.76095
[33] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J Sci Comput, 26, 3, 301 (2006) · Zbl 1178.76269
[34] 13th {USNCCM} International Symposium of High-Order Methods for Computational Fluid Dynamics - A special issue dedicated to the 60th birthday of Professor David Kopriva · Zbl 1390.76329
[35] M. KompenhansG. Rubio, E. Ferrer, and E. Valero, Adaptation strategies for high order discontinuous Galerkin methods based on tau-estimation, J Comput Phys, 306, 216-236 (2016) · Zbl 1352.65353
[36] Rueda-Ramírez, A. M.; Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods, J Comput Phys, 378, 209-233 (2019) · Zbl 1416.65357
[37] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J Comput Phys, 327, 39-66 (2016) · Zbl 1422.65280
[38] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J Comput Phys, 304, 72-108 (2016) · Zbl 1349.76407
[39] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E.; Kopriva, D. A., Insights on aliasing driven instabilities for advection equations with application to Gauss-Lobatto discontinuous Galerkin methods, J Sci Comput, 75, 3, 1262-1281 (2018) · Zbl 1422.65263
[40] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, J Sci Comput, 77, 1, 154-200 (2018) · Zbl 1407.65189
[41] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J Comput Phys, 408, 109241 (2020) · Zbl 07505602
[42] Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E., Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity, J Comput Phys, 326, 805-827 (2016) · Zbl 1373.76320
[43] Redondo, C.; Fraysse, F.; Rubio, G.; Valero, E., Artificial viscosity discontinuous Galerkin spectral element method for the Baer-Nunziato equations, Spectral and high order methods for partial differential equations ICOSAHOM 2016, 613-625 (2017), Springer · Zbl 1388.76230
[44] Boyer, F.; Minjeaud, S., Numerical schemes for a three component Cahn-Hilliard model, ESAIM: Math Model NumerAnal, 45, 4, 697-738 (2011) · Zbl 1267.76127
[45] Xia, Y.; Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J Comput Phys, 227, 1, 472-491 (2007) · Zbl 1131.65088
[46] Dong, S., On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows, Comput Methods Appl Mech Eng, 247, 179-200 (2012) · Zbl 1352.76119
[47] Shi, Y.; Wang, X.-P., Modeling and simulation of dynamics of three-component flows on solid surface, Jpn J Ind Appl Math, 31, 3, 611-631 (2014) · Zbl 1308.76290
[48] Shahbazi, K., Short note: an explicit expression for the penalty parameter of the interior penalty method, J Comput Phys, 205, 2, 401-407 (2005) · Zbl 1072.65149
[49] Rubio, G.; Fraysse, F.; De Vicente, J.; Valero, E., The estimation of truncation error by \(\tau \)-estimation for Chebyshev spectral collocation method, J Sci Comput, 57, 1, 146-173 (2013) · Zbl 1282.65125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.