×

Intrinsic extended isogeometric analysis with emphasis on capturing high gradients or singularities. (English) Zbl 1521.74243

Summary: Formulations of an extra-degree-of-freedom (DOF) free extended isogeometric analysis (IGA) are presented in this study. The idea is achieved by reconstruction of the coefficients through a mesh-free-based local approximation, based on the framework of a generalized finite-element method. The enrichment functions are embedded in the mesh-free basis implicitly, resulting in an identical number of DOFs. Moreover, the system condition number is of the same level between the enriched IGA and non-enriched version. The approach to handling the blending issues is discussed. Numerical examples with a solution containing sharp features/singularities are designed and studied in terms of accuracy and convergence.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
Full Text: DOI

References:

[1] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat J Numer Methods Engrg, 46, 1, 131-150 (1999) · Zbl 0955.74066
[2] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modelling Simulation Mater Sci Eng, 17, 4, Article 043001 pp. (2009)
[3] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat J Numer Methods Engrg, 84, 3, 253-304 (2010) · Zbl 1202.74169
[4] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Internat J Numer Methods Engrg, 64, 8, 1033-1056 (2005) · Zbl 1122.74499
[5] Gracie, R.; Wang, H.; Belytschko, T., Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods, Internat J Numer Methods Engrg, 74, 11, 1645-1669 (2008) · Zbl 1195.74175
[6] Fries, T.-P., A corrected XFEM approximation without problems in blending elements, Internat J Numer Methods Engrg, 75, 5, 503-532 (2008) · Zbl 1195.74173
[7] Menk, A.; Bordas, S. P.A., A robust preconditioning technique for the extended finite element method, Internat J Numer Methods Engrg, 85, 13, 1609-1632 (2011) · Zbl 1217.74128
[8] Agathos, K.; Chatzi, E.; Bordas, S. P.A., A unified enrichment approach addressing blending and conditioning issues in enriched finite elements, Comput Methods Appl Mech Engrg, 349, 673-700 (2019), URL http://www.sciencedirect.com/science/article/pii/S0045782519300763 · Zbl 1441.65088
[9] Lv, J.-H.; Jiao, Y.-Y.; Rabczuk, T.; Zhuang, X.-Y.; Feng, X.-T.; Tan, F., A general algorithm for numerical integration of three-dimensional crack singularities in PU-based numerical methods, Comput Methods Appl Mech Engrg, 363, Article 112908 pp. (2020), URL http://www.sciencedirect.com/science/article/pii/S0045782520300918 · Zbl 1436.74082
[10] Hou, W.; Jiang, K.; Zhu, X.; Shen, Y.; Li, Y.; Zhang, X., Extended isogeometric analysis with strong imposing essential boundary conditions for weak discontinuous problems using b++ splines, Comput Methods Appl Mech Engrg, 370, Article 113135 pp. (2020), URL http://www.sciencedirect.com/science/article/pii/S0045782520303200 · Zbl 1506.65214
[11] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Engrg, 194, 39, 4135-4195 (2005), URL http://www.sciencedirect.com/science/article/pii/S0045782504005171 · Zbl 1151.74419
[12] Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Eng Fract Mech, 75, 5, 943-960 (2008), URL https://www.sciencedirect.com/science/article/pii/S0013794407002536
[13] Wang, L.; Chen, J.-S.; Hu, H.-Y., Subdomain radial basis collocation method for fracture mechanics, Internat J Numer Methods Engrg, 83, 7, 851-876 (2010) · Zbl 1197.74196
[14] Chu, F.; Wang, L.; Zhong, Z., Finite subdomain radial basis collocation method, Comput Mech, 54, 2, 235-254 (2014) · Zbl 1398.65315
[15] Wang, L.; Qian, Z., A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation, Comput Methods Appl Mech Engrg, 371, Article 113303 pp. (2020), URL https://www.sciencedirect.com/science/article/pii/S0045782520304886 · Zbl 1506.65237
[16] Amiri, F.; Anitescu, C.; Arroyo, M.; Bordas, S. P.A.; Rabczuk, T., XLME Interpolants, a seamless bridge between XFEM and enriched meshless methods, Comput Mech, 53, 1, 45-57 (2014), URL https://doi.org/10.1007/s00466-013-0891-2 · Zbl 1398.74449
[17] Ghorashi, S. S.; Valizadeh, N.; Mohammadi, S., Extended isogeometric analysis for simulation of stationary and propagating cracks, Internat J Numer Methods Engrg, 89, 9, 1069-1101 (2012) · Zbl 1242.74119
[18] Jia, Y.; Anitescu, C.; Ghorashi, S. S.; Rabczuk, T., Extended isogeometric analysis for material interface problems, IMA J Appl Math, 80, 3, 608-633 (2015) · Zbl 1331.74166
[19] Bui, T. Q.; Hirose, S.; Zhang, C.; Rabczuk, T.; Wu, C.-T.; Saitoh, T., Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites, Mech Mater, 97, 135-163 (2016), URL http://www.sciencedirect.com/science/article/pii/S016766361600051X
[20] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P., An extended isogeometric thin shell analysis based on kirchhoff-love theory, Comput Methods Appl Mech Engrg, 284, 265-291 (2015), URL https://www.sciencedirect.com/science/article/pii/S0045782514003041 · Zbl 1423.74811
[21] Ghorashi, S. S.; Valizadeh, N.; Mohammadi, S.; Rabczuk, T., T-spline based XIGA for fracture analysis of orthotropic media, Comput Struct, 147, 138-146 (2015), URL https://www.sciencedirect.com/science/article/pii/S004579491400217X
[22] Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M. C.; Scott, M.; Hughes, T. J.R., A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Internat J Numer Methods Engrg, 83, 6, 765-785 (2010) · Zbl 1197.74177
[23] De Luycker, E.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M. C., X-FEM in isogeometric analysis for linear fracture mechanics, Internat J Numer Methods Engrg, 87, 6, 541-565 (2011) · Zbl 1242.74105
[24] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math Comput Simulation, 117, 89-116 (2015), URL http://www.sciencedirect.com/science/article/pii/S0378475415001214 · Zbl 1540.65492
[25] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput Methods Appl Mech Engrg, 284, 762-780 (2015), URL http://www.sciencedirect.com/science/article/pii/S0045782514004095 · Zbl 1425.65202
[26] Yadav, A.; Godara, R. K.; Bhardwaj, G., A review on XIGA method for computational fracture mechanics applications, Eng Fract Mech, 230, Article 107001 pp. (2020), URL http://www.sciencedirect.com/science/article/pii/S0013794420301661
[27] Durga Rao, S. S.; Raju, S., Stable generalized iso-geometric analysis (SGIGA) for problems with discontinuities and singularities, Comput Methods Appl Mech Engrg, 348, 535-574 (2019), URL http://www.sciencedirect.com/science/article/pii/S0045782519300684 · Zbl 1440.65198
[28] Zhang, Q.; Babuška, I.; Banerjee, U., Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Comput Methods Appl Mech Engrg, 311, 476-502 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782516309707 · Zbl 1439.74479
[29] Oh, H.-S.; Kim, H.; Jeong, J. W., Enriched isogeometric analysis of elliptic boundary value problems in domains with cracks and/or corners, Internat J Numer Methods Engrg, 97, 3, 149-180 (2014) · Zbl 1352.74419
[30] Tian, R.; Wen, L., Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM, Comput Methods Appl Mech Engrg, 285, 639-658 (2015), URL http://www.sciencedirect.com/science/article/pii/S0045782514004526 · Zbl 1423.74926
[31] Babuska, I.; Melenk, J. M., The partition of unity method, Internat J Numer Methods Engrg, 40, 4, 727-758 (1997) · Zbl 0949.65117
[32] Fries, T.-P.; Belytschko, T., The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Internat J Numer Methods Engrg, 68, 13, 1358-1385 (2006) · Zbl 1129.74045
[33] Wen, L.; Tian, R., Improved XFEM: Accurate and robust dynamic crack growth simulation, Comput Methods Appl Mech Engrg, 308, 256-285 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782516303632 · Zbl 1439.74475
[34] Piegl, L.; Tiller, W., The NURBS book (1995), Springer · Zbl 0828.68118
[35] Westergaard, H. M.W., Bearing pressures and cracks, J Appl Mech, 6, A49-A53 (1939)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.