×

A general algorithm for numerical integration of three-dimensional crack singularities in PU-based numerical methods. (English) Zbl 1436.74082

Summary: With the development of PU-based numerical methods for crack problems, the evaluation of various orders of vertex/edge singularity has been one of the most critical issues, which restrains the computational efficiency of PU-based methods, especially for 3D crack problems. In this paper, based on the conventional Duffy transformation, a general algorithm for numerical integration of three-dimensional crack singularities is proposed for the vertex/edge singularity problems, which takes the integration cell shape into full consideration. Besides, the corresponding 3D conformal preconditioning strategy is constructed to fully eliminate the shape influence of tetrahedron elements. Extensive numerical examples, including ill-shaped integration cells and crack-front tetrahedron elements with parallel/nonparallel crack front, are given to validate the feasibility and accuracy of the proposed method. As a result, for each crack-front element, several hundreds of Gauss points are sufficient to achieve the precision of \(10^{- 6}\) for both kernels \(1 / r\) and \(1 / \sqrt{r} \), in sharp contrast with around ten thousands of Gauss points using the conventional Duffy transformation.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74R10 Brittle fracture

Software:

COMSOL; XFEM
Full Text: DOI

References:

[1] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 5, 601-620 (1999) · Zbl 0943.74061
[2] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[3] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Internat. J. Numer. Methods Engrg., 48, 11, 1549-1570 (2000) · Zbl 0963.74067
[4] Duarte, C. A.; Hamzeh, O.; Liszka, T.; Tworzydlo, W., A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput. Methods Appl. Mech. Engrg., 190, 15-17, 2227-2262 (2001) · Zbl 1047.74056
[5] Duarte, C. A.; Kim, D. J., Analysis and applications of a generalized finite element method with global-local enrichment functions, Comput. Methods Appl. Mech. Engrg., 197, 6-8, 487-504 (2008) · Zbl 1169.74597
[6] Zheng, H.; Xu, D., New strategies for some issues of numerical manifold method in simulation of crack propagation, Internat. J. Numer. Methods Engrg., 97, 13, 986-1010 (2014) · Zbl 1352.74311
[7] Yang, Y.; Tang, X.; Zheng, H.; Liu, Q.; He, L., Three-dimensional fracture propagation with numerical manifold method, Eng. Anal. Bound. Elem., 72, 65-77 (2016) · Zbl 1403.74091
[8] Zhou, S.; Rabczuk, T.; Zhuang, X., Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv. Eng. Softw., 122, 31-49 (2018)
[9] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation, Comput. Methods Appl. Mech. Engrg., 355, 729-752 (2019) · Zbl 1441.74223
[10] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase-field modeling of fluid-driven dynamic cracking in porous media, Comput. Methods Appl. Mech. Engrg., 350, 169-198 (2019) · Zbl 1441.74222
[11] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 1-4, 289-314 (1996) · Zbl 0881.65099
[12] Elguedj, T.; Gravouil, A.; Combescure, A., Appropriate extended functions for X-FEM simulation of plastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 195, 7-8, 501-515 (2006) · Zbl 1222.74041
[13] Lecampion, B., An extended finite element method for hydraulic fracture problems, Commun. Numer. Methods. Eng., 25, 2, 121-133 (2009) · Zbl 1156.74043
[14] Sukumar, N.; Dolbow, J.; Moës, N., Extended finite element method in computational fracture mechanics: a retrospective examination, Int. J. Fract., 196, 1-2, 189-206 (2015)
[15] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Internat. J. Numer. Methods Engrg., 66, 5, 761-795 (2006) · Zbl 1110.74858
[16] Ventura, G.; Benvenuti, E., Equivalent polynomials for quadrature in heaviside function enriched elements, Internat. J. Numer. Methods Engrg., 102, 3-4, 688-710 (2015) · Zbl 1352.65559
[17] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56, 6, 967-981 (2015) · Zbl 1336.65020
[18] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Modeling crack discontinuities without element-partitioning in the extended finite element method, Internat. J. Numer. Methods Engrg., 110, 11, 1021-1048 (2017) · Zbl 07866619
[19] Mousavi, S.; Sukumar, N., Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Methods Appl. Mech. Engrg., 199, 49-52, 3237-3249 (2010) · Zbl 1225.74099
[20] Xiao, H.; Gimbutas, Z., A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput. Math. Appl., 59, 2, 663-676 (2010) · Zbl 1189.65047
[21] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Internat. J. Numer. Methods Engrg., 64, 8, 1033-1056 (2005) · Zbl 1122.74499
[22] Park, K.; Pereira, J. P.; Duarte, C. A.; Paulino, G. H., Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems, Internat. J. Numer. Methods Engrg., 78, 10, 1220-1257 (2009) · Zbl 1183.74305
[23] Nagarajan, A.; Mukherjee, S., A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity, Comput. Mech., 12, 1-2, 19-26 (1993) · Zbl 0776.73073
[24] Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M., High-order extended finite element method for cracked domains, Internat. J. Numer. Methods Engrg., 64, 3, 354-381 (2005) · Zbl 1181.74136
[25] Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19, 6, 1260-1262 (1982) · Zbl 0493.65011
[26] Mousavi, S.; Sukumar, N., Generalized Duffy transformation for integrating vertex singularities, Comput. Mech., 45, 2-3, 127 (2010)
[27] Minnebo, H., Three-dimensional integration strategies of singular functions introduced by the XFEM in the LEFM, Internat. J. Numer. Methods Engrg., 92, 13, 1117-1138 (2012) · Zbl 1352.74294
[28] Cano, A.; Moreno, C., A new method for numerical integration of singular functions on the plane, Numer. Algorithms, 68, 3, 547-568 (2015) · Zbl 1311.65027
[29] Cao-Rial, M.; Moreno, C.; Quintela, P., A new methodology for element partition and integration procedures for XFEM, Finite Elem. Anal. Des., 113, 1-13 (2016)
[30] Cano, A.; Moreno, C., Transformation methods for the numerical integration of three-dimensional singular functions, J. Sci. Comput., 71, 2, 571-593 (2017) · Zbl 1384.65083
[31] Lv, J.; Jiao, Y.; Wriggers, P.; Rabczuk, T.; Feng, X.; Tan, F., Efficient integration of crack singularities in the extended finite element method: Duffy-distance transformation and conformal preconditioning strategy, Comput. Methods Appl. Mech. Engrg., 340, 559-576 (2018) · Zbl 1440.74424
[32] Ma, H.; Kamiya, N., Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method, Eng. Anal. Bound. Elem., 26, 4, 329-339 (2002) · Zbl 1003.65133
[33] Ma, H.; Kamiya, N., A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity, Comput. Mech., 29, 4-5, 277-288 (2002) · Zbl 1128.74343
[34] Bordas, S.; Nguyen, P. V.; Dunant, C.; Guidoum, A.; Nguyen-Dang, H., An extended finite element library, Internat. J. Numer. Methods Engrg., 71, 6, 703-732 (2007) · Zbl 1194.74367
[35] Schöllmann, M.; Fulland, M.; Richard, H., Development of a new software for adaptive crack growth simulations in 3D structures, Eng. Fract. Mech., 70, 2, 249-268 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.