×

A quantitative variational analysis of the staircasing phenomenon for a second order regularization of the Perona-Malik functional. (English) Zbl 1521.49011

The authors consider extensions of the 1D Perona-Malik functional of the type \(\mathbb{PMF}_{\varepsilon }(\beta ,f,\Omega ,u)=\int_{\Omega }\{\varepsilon ^{6}\omega (\varepsilon )^{4}u^{\prime \prime }(x)^{2}+\log (1+u^{\prime }(x)^{2})+\beta (u(x)-f(x))^{2}\}dx\), where \(\beta >0\) is a real number, \(\Omega \subseteq \mathbb{R}\) an open set, \(\varepsilon \in (0,1)\), and \(f\in L^{2}(\Omega )\) a given function called forcing term. The authors first prove the existence of minimizers to the problem \(\min\{\mathbb{ PMF}_{\varepsilon }(\beta ,f,(0,1),u):u\in H^{2}(0,1)\}=m(\varepsilon ,\beta ,f)\). Every minimizer to this problem is proved to belong to \(H^{4}(0,1)\) and in particular to \(C^{2}([0,1])\). When \(\varepsilon \rightarrow 0^{+}\), the minimum \(m(\varepsilon ,\beta ,f)\) converges to \(0\). The proof is a standard application of the direct method in the calculus of variations and of the fact that the convex envelope of the function \(p\rightarrow \log(1+p^{2})\) is identically equal to \(0\).
The first main result proves that if \(\omega (\varepsilon )=\varepsilon \left\vert \log \varepsilon \right\vert ^{1/2}\) and \(f\in C^{1}([0,1])\), the minimum value \( m(\varepsilon ,\beta ,f)\) satisfies \(\lim_{\varepsilon \rightarrow 0^{+}} \frac{m(\varepsilon ,\beta ,f)}{\omega (\varepsilon )^{2}}=10(\frac{2\beta }{ 27})^{1/5}\int_{0}^{1}\left\vert f^{\prime }(x)\right\vert ^{4/5}dx\). The second main result proves blow-up properties of minimizers \(u_{\varepsilon }\) at standard resolution, the sequences \(w_{\varepsilon }(y)=\frac{ u_{\varepsilon }(x_{\varepsilon }+\omega (\varepsilon )y)-f(x_{\varepsilon }) }{\omega (\varepsilon )}\) and \(v_{\varepsilon }(y)=\frac{u_{\varepsilon }(x_{\varepsilon }+\omega (\varepsilon )y)-u_{\varepsilon }(x_{\varepsilon }) }{\omega (\varepsilon )}\) being relatively compact in the sense of locally of locally strict convergence and all their limit points being suitable staircases. These \(w_{\varepsilon }\) and \(v_{\varepsilon }\) correspond to zooms of the graph of a minimizer \(u_{\varepsilon }\) in a neighborhood of \( (x_{\varepsilon },f(x_{\varepsilon })\) and \((x_{\varepsilon },u_{\varepsilon }(x_{\varepsilon }))\) at scale \(\omega (\varepsilon )\). A sequence of functions \(\{u_{n}\}\subseteq BV_{loc}(\mathbb{R})\) converges locally strictly to some \(u_{\infty }\in BV_{loc}(\mathbb{R})\) if \( u_{n}\) converges to \(u_{\infty }\) in \(BV(a,b)\) for every interval \( (a,b)\subseteq \mathbb{R}\) whose endpoints are not jump points of the limit \( u_{\infty }\). The authors also prove that the family \(\{u_{\varepsilon }\}\) of minimizers converges to \(f\) in the strict sense and also as varifolds.
In a further part of their paper, the authors consider the functional defined on \(H^{2}(\Omega )\) by \(\mathbb{RMF}_{\varepsilon }(a,b,u)=\int_{a}^{b}\{\varepsilon ^{6}u^{\prime \prime }(x)^{2}+\frac{1}{ \omega (\varepsilon )^{2}}\log (1+u^{\prime }(x)^{2})\}dx\) and the functional \(\mathbb{J}^{1/2}(a,b,u)=\sum_{s\in S_{u}\cap (a,b)}\left\vert \lim_{x\rightarrow s^{+}}u(x)-\lim_{x\rightarrow s^{-}}u(x)\right\vert ^{1/2} \), defined for every pure jump function that is having a finite or countable jump set \(S_{u}\).Both functionals are extended by \(+\infty \) to \(L^{2}(a,b) \). They prove that the \(\Gamma\)-\(\lim_{\varepsilon \rightarrow 0^{+}}\mathbb{RMF}_{\varepsilon }(a,b,u)\) is equal to \(\frac{16}{\sqrt{3}}\mathbb{J} ^{1/2}(a,b,u)\) for every \(u\in L^{2}(a,b)\), with respect to the metric of \( L^{2}(a,b)\). They also prove a compactness result for minimizers and the strict convergence of recovery sequences. The paper ends with some perspectives and open problems.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
35B25 Singular perturbations in context of PDEs
49Q20 Variational problems in a geometric measure-theoretic setting
39B22 Functional equations for real functions

References:

[1] Alberti, Giovanni, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 761-825 (2001) · Zbl 1021.49012 · doi:10.1002/cpa.1013
[2] Alicandro, Roberto, Free-discontinuity problems generated by singular perturbation, Proc. Roy. Soc. Edinburgh Sect. A, 1115-1129 (1998) · Zbl 0920.49007 · doi:10.1017/S0308210500027256
[3] Amann, H., Time-delayed Perona-Malik type problems, Acta Math. Univ. Comenian. (N.S.), 15-38 (2007) · Zbl 1132.68067
[4] Ambrosio, L., A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. B (7), 857-881 (1989) · Zbl 0767.49001
[5] Ambrosio, Luigi, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, xviii+434 pp. (2000), The Clarendon Press, Oxford University Press, New York · Zbl 0957.49001
[6] Bellettini, Giovanni, The \(\Gamma \)-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension, Math. Models Methods Appl. Sci., 1091-1113 (2014) · Zbl 1287.49013 · doi:10.1142/S0218202513500772
[7] Bellettini, G., The \(\Gamma \)-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type, Trans. Amer. Math. Soc., 4929-4987 (2008) · Zbl 1191.49010 · doi:10.1090/S0002-9947-08-04495-4
[8] Bellettini, Giovanni, A concept of solution and numerical experiments for forward-backward diffusion equations, Discrete Contin. Dyn. Syst., 783-842 (2006) · Zbl 1105.35007 · doi:10.3934/dcds.2006.16.783
[9] Bellettini, G., Convergence of discrete schemes for the Perona-Malik equation, J. Differential Equations, 892-924 (2008) · Zbl 1155.35002 · doi:10.1016/j.jde.2008.05.003
[10] Bertsch, Michiel, Measure-valued solutions to a nonlinear fourth-order regularization of forward-backward parabolic equations, SIAM J. Math. Anal., 374-402 (2019) · Zbl 1407.35104 · doi:10.1137/18M1203821
[11] Bertsch, M., On a class of forward-backward parabolic equations: formation of singularities, J. Differential Equations, 6656-6698 (2020) · Zbl 1443.35066 · doi:10.1016/j.jde.2020.05.007
[12] Braides, Andrea, Static, quasistatic and dynamic analysis for scaled Perona-Malik functionals, Acta Appl. Math., 79-107 (2018) · Zbl 1397.49018 · doi:10.1007/s10440-018-0155-4
[13] Catt\'{e}, Francine, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 182-193 (1992) · Zbl 0746.65091 · doi:10.1137/0729012
[14] Colombo, Maria, Slow time behavior of the semidiscrete Perona-Malik scheme in one dimension, SIAM J. Math. Anal., 2564-2600 (2011) · Zbl 1240.35040 · doi:10.1137/100818698
[15] De Giorgi, Ennio, Conjectures concerning some evolution problems, Duke Math. J., 255-268 (1996) · Zbl 0874.35027 · doi:10.1215/S0012-7094-96-08114-4
[16] Esedo\={g}lu, Selim, An analysis of the Perona-Malik scheme, Comm. Pure Appl. Math., 1442-1487 (2001) · Zbl 1031.68133 · doi:10.1002/cpa.3008
[17] Esedo\={g}lu, Selim, Stability properties of the Perona-Malik scheme, SIAM J. Numer. Anal., 1297-1313 (2006) · Zbl 1127.94002 · doi:10.1137/S0036142903424817
[18] Ghisi, Marina, Gradient estimates for the Perona-Malik equation, Math. Ann., 557-590 (2007) · Zbl 1130.35081 · doi:10.1007/s00208-006-0047-1
[19] Guidotti, Patrick, A new nonlocal nonlinear diffusion of image processing, J. Differential Equations, 4731-4742 (2009) · Zbl 1170.35450 · doi:10.1016/j.jde.2009.03.017
[20] Guidotti, Patrick, A backward-forward regularization of the Perona-Malik equation, J. Differential Equations, 3226-3244 (2012) · Zbl 1250.35177 · doi:10.1016/j.jde.2011.10.022
[21] Guidotti, Patrick, Two new nonlinear nonlocal diffusions for noise reduction, J. Math. Imaging Vision, 25-37 (2009) · Zbl 1523.94010 · doi:10.1007/s10851-008-0108-z
[22] Kichenassamy, Satyanad, The Perona-Malik paradox, SIAM J. Appl. Math., 1328-1342 (1997) · Zbl 0887.35071 · doi:10.1137/S003613999529558X
[23] Kim, Seonghak, On Lipschitz solutions for some forward-backward parabolic equations, Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire, 65-100 (2018) · Zbl 1378.35153 · doi:10.1016/j.anihpc.2017.03.001
[24] Morini, M., Mumford-Shah functional as \(\Gamma \)-limit of discrete Perona-Malik energies, Math. Models Methods Appl. Sci., 785-805 (2003) · Zbl 1045.49022 · doi:10.1142/S0218202503002726
[25] M\"{u}ller, Stefan, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations, 169-204 (1993) · Zbl 0821.49015 · doi:10.1007/BF01191616
[26] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, Technical Report, EECS Department, University of California, Berkeley, December 1988.
[27] I. Ripoli, Investigation on a Perona-Malik problem, Master Thesis, University of Pisa, 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.