×

On some effects of dependencies on an insurer’s risk exposure, probability of ruin, and optimal premium loading. (English) Zbl 1520.91328

Summary: We study how the presence of dependencies between risks in a population of prospective insurance customers translates into risk exposure for an insurance company, depending on the company’s market share on the various risks. It turns out that the dependency structure in the insurer’s portfolio may differ significantly from the dependency structure of those risks in the general population, even when policyholders for different risks are selected independently. We obtain an upper bound for the difference between the ruin probability and its estimate based on the company’s portfolio marginal distributions. Under certain conditions, dependencies between risks in the portfolio of a company with small market shares are mild. We characterize the optimal loadings and market shares, assuming generic demand functions for the different risks.

MSC:

91G05 Actuarial mathematics

Software:

R

References:

[1] Andrade e. Silva, JM; de Lourdes Centeno, M., Ratemaking of dependent risks, ASTIN Bull, 47, 3, 875-894 (2017) · Zbl 1390.91156 · doi:10.1017/asb.2017.16
[2] Asmussen, S., Risk theory in a Markovian environment, Scand Actuar J, 1989, 2, 69-100 (1989) · Zbl 0684.62073 · doi:10.1080/03461238.1989.10413858
[3] Asmussen, S.; Albrecher, H., Ruin probabilities (2010), Singapore: World Scientific, Singapore · Zbl 1247.91080 · doi:10.1142/7431
[4] Asmussen, S.; Christensen, BJ; Taksar, M., Portfolio size as function of the premium: modelling and optimization, Stochastics, 85, 4, 575-588 (2013) · Zbl 1292.91088 · doi:10.1080/17442508.2013.797426
[5] Asmussen, S.; Christensen, BJ; Thøgersen, J., Nash equilibrium premium strategies for push-pull competition in a frictional non-life insurance market, Insurance Math Econ, 87, 92-100 (2019) · Zbl 1410.91255 · doi:10.1016/j.insmatheco.2019.02.002
[6] Asmussen, S.; Christensen, BJ; Thøgersen, J., Stackelberg equilibrium premium strategies for push-pull competition in a non-life insurance market with product differentiation, Risks, 7, 2, 49 (2019) · doi:10.3390/risks7020049
[7] Avanzi, B.; Cassar, LC; Wong, B., Modelling dependence in insurance claims processes with Lévy copulas, ASTIN Bull, 41, 2, 575-609 (2011) · Zbl 1242.91088 · doi:10.2143/AST.41.2.2136989
[8] Bäuerle, N.; Blatter, A., Optimal control and dependence modeling of insurance portfolios with Lévy dynamics, Insurance Math Econ, 48, 3, 398-405 (2011) · Zbl 1218.91068 · doi:10.1016/j.insmatheco.2011.01.008
[9] Bäuerle, N.; Müller, A., Modeling and comparing dependencies in multivariate risk portfolios, ASTIN Bull, 28, 1, 59-76 (1998) · Zbl 1137.91484 · doi:10.2143/AST.28.1.519079
[10] Bi, J.; Chen, K., Optimal investment-reinsurance problems with common shock dependent risks under two kinds of premium principles, RAIRO Oper Res, 53, 1, 179-206 (2019) · Zbl 1418.62373 · doi:10.1051/ro/2019010
[11] Cai, J.; Wei, W., Optimal reinsurance with positively dependent risks, Insurance Math Econ, 50, 57-63 (2012) · Zbl 1239.91075 · doi:10.1016/j.insmatheco.2011.10.006
[12] Cao, J.; Landriault, D.; Li, B., Optimal reinsurance-investment strategy for a dynamic contagion claim model., Insurance Math Econ, 93, 206-215 (2020) · Zbl 1446.91056 · doi:10.1016/j.insmatheco.2020.04.013
[13] Christensen, BJ; Parra-Alvarez, JC; Serrano, R., Optimal control of investment, premium and deductible for a non-life insurance company, Insurance Math Econ, 101, 384-405 (2021) · Zbl 1475.91293 · doi:10.1016/j.insmatheco.2021.07.005
[14] Cont, R.; Tankov, P., Financial modelling with jump processes (2004), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1052.91043
[15] Cossette, H.; Marceau, E., The discrete-time risk model with correlated classes of business, Insurance Math Econ, 26, 2, 133-149 (2000) · Zbl 1103.91358 · doi:10.1016/S0167-6687(99)00057-8
[16] Cox, DR, Some statistical methods connected with series of events, J R Stat Soc Ser B (Methodol), 17, 2, 129-157 (1955) · Zbl 0067.37403 · doi:10.1111/j.2517-6161.1955.tb00188.x
[17] de Lourdes Centeno, M., Dependent risks and excess of loss reinsurance, Insurance Math Econ, 37, 2, 229-238 (2005) · Zbl 1125.91062 · doi:10.1016/j.insmatheco.2004.12.001
[18] Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R., Actuarial theory for dependent risks. Measures, orders and models (2005), New York: Wiley, New York · doi:10.1002/0470016450
[19] Dickson, DCM, Insurance risk and ruin (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1351.91001
[20] Dragomir, SS, Some Gronwall type inequalities and applications (2003), New York: Nova Science, New York · Zbl 1094.34001
[21] Dutang, C.; Albrecher, H.; Loisel, S., Competition among non-life insurers under solvency constraints: a game-theoretic approach, Eur J Oper Res, 231, 702-711 (2013) · Zbl 1317.91042 · doi:10.1016/j.ejor.2013.06.029
[22] Embrechts, P.; McNeil, AJ; Straumann, D.; Dempster, M., Correlation and dependence in risk management: properties and pitfalls, Risk management: value at risk and beyond, 176-223 (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1035.91036 · doi:10.1017/CBO9780511615337.008
[23] Emms, P., Dynamic pricing of general insurance in a competitive market, Astin Bull, 37, 1, 1-34 (2007) · Zbl 1162.91409 · doi:10.2143/AST.37.1.2020796
[24] Fu, K-A; Liu, Y., Ruin probabilities for a multidimensional risk model with non-stationary arrivals and subexponential claims, Probab Eng Inf Sci (2021) · Zbl 1505.91328 · doi:10.1017/S0269964821000085
[25] Furman, E.; Landsman, Z., Economic capital allocations for non-negative portfolios of dependent risks, ASTIN Bull, 38, 2, 601-619 (2008) · Zbl 1274.91379 · doi:10.2143/AST.38.2.2033355
[26] Grandell, J., Aspects of risk theory (2012), New York: Springer Science & Business Media, New York · Zbl 0717.62100
[27] Guo, JY; Yuen, KC; Zhou, M., Ruin probabilities in Cox risk models with two dependent classes of business, Acta Math Sin Engl Ser, 23, 7, 1281-1288 (2007) · Zbl 1120.60069 · doi:10.1007/s10114-005-0819-7
[28] Hawkes, AG, Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58, 83-90 (1971) · Zbl 0219.60029 · doi:10.1093/biomet/58.1.83
[29] Hipp, C.; Frittelli, M.; Runggaldier, W., Stochastic control with application in insurance, Stochastic methods in finance, 127-164 (2004), Berlin: Springer, Berlin · Zbl 1134.91024 · doi:10.1007/978-3-540-44644-6_3
[30] Kaas, R.; Goovaerts, M.; Dhaene, J.; Denuit, M., Modern actuarial risk theory: using R (2008), New York: Springer Science & Business Media, New York · Zbl 1148.91027 · doi:10.1007/978-3-540-70998-5
[31] Li, D.; Li, B.; Shen, Y., A dynamic pricing game for general insurance market, J Comput Appl Math, 389, 113349 (2021) · Zbl 1457.91332 · doi:10.1016/j.cam.2020.113349
[32] Liang, Z.; Yuen, KC, Optimal dynamic reinsurance with dependent risks: variance premium principle, Scand Actuar J, 2016, 1, 18-362 (2016) · Zbl 1401.91167 · doi:10.1080/03461238.2014.892899
[33] Lu, Z.; Meng, S.; Liu, L.; Han, Z., Optimal insurance design under background risk with dependence, Insurance Math Econ, 80, 15-28 (2018) · Zbl 1402.91209 · doi:10.1016/j.insmatheco.2018.02.006
[34] Mouminoux, C.; Dutang, C.; Loisel, S.; Albrecher, H., On a Markovian game model for competitive insurance pricing, Methodol Comput Appl Probab (2021) · Zbl 1489.91069 · doi:10.1007/s11009-021-09906-1
[35] Mourdoukoutas, F.; Boonen, TJ; Koo, B.; Pantelous, AA, Pricing in a competitive stochastic insurance market, Insurance Math Econ, 97, 44-56 (2021) · Zbl 1460.91233 · doi:10.1016/j.insmatheco.2021.01.003
[36] Nelsen, RB, An introduction to copulas (2007), New York: Springer Science & Business Media, New York
[37] Ohlsson, E.; Johansson, B., Non-life insurance pricing with generalized linear models (2010), Berlin: Springer, Berlin · Zbl 1194.91011 · doi:10.1007/978-3-642-10791-7
[38] Polborn, MK, A model of an oligopoly in an insurance market, Geneva Pap Risk Insur Theory, 23, 41-48 (1998) · doi:10.1023/A:1008677913887
[39] R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org
[40] Ramsay, CM; Oguledo, VI, Insurance pricing with complete information, state-dependent utility, and production costs, Insurance Math Econ, 50, 462-469 (2012) · Zbl 1237.91138 · doi:10.1016/j.insmatheco.2012.02.004
[41] Schmidli, H., Stochastic control in insurance (2008), Berlin: Springer, Berlin · Zbl 1133.93002
[42] Tankov, P.; Podolskij, M.; Stelzer, R.; Thorbjørnsen, S.; Veraart, AED, Lévy copulas: review of recent results, The fascination of probability, statistics and their applications, 127-151 (2016), Berlin: Springer, Berlin · Zbl 1354.60051 · doi:10.1007/978-3-319-25826-3_7
[43] Taylor, GC, Underwriting strategy in a competitive insurance environment, Insurance Math Econ, 5, 59-77 (1986) · Zbl 0585.62175 · doi:10.1016/0167-6687(86)90009-0
[44] Thøgersen, J., Optimal premium as a function of the deductible: customer analysis and portfolio characteristics, Risks, 4, 4, 42 (2016) · doi:10.3390/risks4040042
[45] Yang, Y.; Wang, K.; Konstantinides, DG, Uniform asymptotics for discounted aggregate claims in dependent risk models, J Appl Probrobab, 51, 669-684 (2014) · Zbl 1303.91097 · doi:10.1239/jap/1409932666
[46] Yu, Y.; Hui, M.; Hui, C., Mean-variance problem for an insurer with dependent risks and stochastic interest rate in a jump-diffusion market, Optimization (2021) · Zbl 1508.91490 · doi:10.1080/02331934.2021.1887179
[47] Yuen, KC; Liang, Z.; Zhou, M., Optimal proportional reinsurance with common shock dependence, Insurance Math Econ, 64, 1-13 (2015) · Zbl 1348.91191 · doi:10.1016/j.insmatheco.2015.04.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.