×

Noncommutative weighted individual ergodic theorems with continuous time. (English) Zbl 1520.47025

Summary: We show that ergodic flows in the noncommutative \(L^1\)-space (associated with a semifinite von Neumann algebra) generated by continuous semigroups of positive Dunford-Schwartz operators and modulated by bounded Besicovitch almost periodic functions converge almost uniformly. The corresponding local ergodic theorem is also proved. We then extend these results to arbitrary noncommutative fully symmetric spaces and present applications to noncommutative Orlicz (in particular, noncommutative \(L^p\)-spaces), Lorentz, and Marcinkiewicz spaces. The commutative counterparts of the results are derived.

MSC:

47A35 Ergodic theory of linear operators
46L52 Noncommutative function spaces

References:

[1] Bellow, A. and Lozert, V., The weighted pointwise ergodic theorem and the individual ergodic theorem along sequences, Trans. Amer. Math. Soc.288 (1985) 307-345. · Zbl 0619.47004
[2] Besicovitch, A. S., Almost Periodic Functions (Cambridge Univ. Press, 1932). · Zbl 0004.25303
[3] Baxter, J. R. and Olsen, J. H., Weighted and subsequential ergodic theorems, Canad. J. Math.35 (1983) 145-166. · Zbl 0478.47007
[4] Chilin, V., Litvinov, S. and Skalski, A., A few remarks in noncommutative ergodic theory, J. Oper. Th.53 (2005) 331-350. · Zbl 1119.46314
[5] Chilin, V. and Litvinov, S., Ergodic theorems in fully symmetric spaces of \(\tau \)-measurable operators, Stud. Math.288 (2015) 177-195. · Zbl 1350.47008
[6] V. Chilin and S. Litvinov, Individual ergodic theorems for semifinite von Neumann algebras, preprint (2016), arXiv:1607.03452v4 [math.OA].
[7] Chilin, V. and Litvinov, S., Individual ergodic theorems in noncommutative Orlicz spaces, Positivity21 (2017) 49-59. · Zbl 1459.47006
[8] Chilin, V. and Litvinov, S., Local ergodic theorems in symmetric spaces of measurable operators, Integr. Equat. Oper. Th.91 (2019) 15. · Zbl 1480.47017
[9] Chilin, V. I., Medzhitov, A. M. and Sukochev, F. A., Isometries of non-commutative Lorentz spaces, Math. Z.200 (1989) 527-545. · Zbl 0646.46060
[10] Dang-Ngoc, N., A random ergodic theorem in von Neumann algebras, Pure Appl. Math. Sci.86 (1982) 605-608. · Zbl 0528.46053
[11] Demeter, C. and Jones, R. L., Besicovitch weights and the necessity of duality restrictions in the weighted ergodic theorem, Chapel Hill Ergodic Theory Workshops, , Vol. 356 (Amer. Math. Soc., 2004), pp. 127-135. · Zbl 1060.37004
[12] Dixmier, J., Von Neumann Algebras, , Vol. 27 (North-Holland Publishing Company, 1981). · Zbl 0473.46040
[13] Dodds, P. G., Dodds, T. K. and Pagter, B., Fully symmetric operator spaces, Integr. Equat. Oper. Th.15 (1992) 942-972. · Zbl 0807.46028
[14] Dodds, P. G., Dodds, T. K. and Pagter, B., Noncommutative Köthe duality, Trans. Amer. Math. Soc.339 (1993) 717-750. · Zbl 0801.46074
[15] Dodds, P. G., Dodds, T. K., Sukochev, F. A. and Tikhonov, O. Ye., A Non-commutative Yoshida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity9 (2005) 457-484. · Zbl 1123.46044
[16] Dodds, P. G. and Pagter, B., The non-commutative Yosida-Hewitt decomposition revisited, Trans. Amer. Math. Soc.364 (2012) 6425-6457. · Zbl 1303.46054
[17] Edgar, G. A. and Sucheston, L., Stopping Times and Directed Processes (Cambridge Univ. Press, 1992). · Zbl 0779.60032
[18] Fack, T. and Kosaki, H., Generalized \(s\)-numbers of \(\tau \)-measurable operators, Pacific. J. Math.123 (1986) 269-300. · Zbl 0617.46063
[19] Hensz, E., On some ergodic theorems for von Neumann algebras, in Probability Theory and Vector Spaces III, Lublin, August 1983, (Springer, 1983), pp. 119-123. · Zbl 0563.46034
[20] Junge, M. and Xu, Q., Noncommutative maximal ergodic theorems, J. Amer. Math. Soc.20 (2007) 385-439. · Zbl 1116.46053
[21] Kalton, N. J. and Sukochev, F. A., Symmetric norms and spaces of operators, J. Reine Angew. Math.621 (2008) 81-121. · Zbl 1152.47014
[22] Krein, S. G., Petunin, Ju. I. and Semenov, E. M., Interpolation of Linear Operators, , Vol. 54 (Amer. Math. Soc., 1982). · Zbl 0493.46058
[23] Kunze, W., Noncommutative Orlicz spaces and generalized Arens algebras, Math. Nachr.147 (1990) 123-138. · Zbl 0746.46062
[24] Kusraev, A. G., Dominated Operators (Springer, 2000).
[25] Lin, M., Olsen, J. and Tempelman, A., On modulated ergodic theorems for Dunford-Schwartz operators, Illinois J. Math.43 (1999) 542-567. · Zbl 0939.47008
[26] Litvinov, S., Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems, Proc. Amer. Math. Soc.140 (2012) 2401-2409. · Zbl 1279.46048
[27] S. Litvinov, Almost uniform convergence in noncommutative Dunford-Schwartz ergodic theorem, preprint (2016), arXiv:1606.04501v2 [math.OA].
[28] Litvinov, S., Almost uniform convergence in noncommutative Dunford-Schwartz ergodic theorem, C. R. Acad. Sci. Paris, Ser. I355 (2017) 977-980. · Zbl 1385.46047
[29] Mukhamedov, F. and Karimov, A., On noncommutative weighted local ergodic theorems on \(L^p\)-spaces, Period. Math. Hungar.55 (2007) 223-235. · Zbl 1199.46152
[30] Mukhamedov, F., Mukhamedov, M. and Temir, S., On multiparameter weighted ergodic theorem for noncommutative \(L_p\)-spaces, Math. Anal. Appl.343 (2008) 226-232. · Zbl 1147.46039
[31] Nelson, E., Notes on non-commutative integration, J. Funct. Anal.15 (1974) 103-116. · Zbl 0292.46030
[32] Pisier, G. and Xu, Q., Noncommutative \(L^p\)-Spaces, , Vol. 2 (Elsevier, 2003), pp. 1459-1517. · Zbl 1046.46048
[33] Ryll-Nardzewski, C., Topics in Ergodic Theory, , Vol. 472 (Springer-Verlag, 1975), pp. 131-156. · Zbl 0324.28009
[34] Sakai, S., \( C^\ast \)-Algebras and \(W^\ast \)-Algebras (Springer-Verlag, 1971). · Zbl 0219.46042
[35] Segal, I. E., A non-commutative extension of abstract integration, Ann. of Math.57 (1953) 401-457. · Zbl 0051.34201
[36] Yeadon, F. J., Non-commutative \(L^p\)-spaces, Math. Proc. Cambridge Phil. Soc.77 (1975) 91-102. · Zbl 0327.46068
[37] Yeadon, F. J., Ergodic theorems for semifinite von Neumann algebras I, J. London Math. Soc.16 (1977) 326-332. · Zbl 0369.46061
[38] Yosida, K., Functional Analysis (Springer Verlag, 1965). · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.