×

Individual ergodic theorems in noncommutative Orlicz spaces. (English) Zbl 1459.47006

Let \({\mathcal M}\) be a semifinite von Neumann algebra with a faithful normal semifinite trace \(\tau\), \(L^0=L^0({\mathcal M},\tau)\) the \(*\)-algebra of \(\tau\)-measurable operators affiliated with \({\mathcal M}\), and let \(L^p=L^p({\mathcal M},\tau)\), \(1\leq p\leq \infty\), be the noncommutative \(L^p\) space associated with \(({\mathcal M},\tau)\). A linear map \(T:L^1+L^\infty \to L^1+ L^\infty\) such that \(\| T(x)\|_\infty \leq \| x\|_\infty\) for all \(x\in {\mathcal M}\) and \(\| T(x)\|_1 \leq \| x\|_1\) for all \(x\in L^1\) is called a Dunford-Schwartz operator.
Let \(\Phi\) be an Orlicz function and let \(L^\Phi =L^\Phi({\mathcal M},\tau)\) be the noncommutative Orlicz space associated with \(({\mathcal M},\tau)\). The Orlicz function satisfies a \(\Delta_2\)-condition (resp., \(\delta_2\)-condition) if there exists \(k>0\) and \(u_0\geq 0\) such that \(\Phi(2u)\leq k\Phi(u)\) for all \(u\geq u_0\), (resp., \(\Phi(2u)\leq k\Phi(u)\) for all \(u\in (0,u_0]\)).
The main result of the paper shows that, if \(T\) is a positive Dunford-Schwartz operator and \(\Phi\) is an Orlicz function satisfying the \((\delta_2, \Delta_2)\) condition, then, for all \(x\in L^\Phi\), the averages \(\frac{1}{n}\sum_{k=1}^n T^k(x)\) converge in the b.a.u.(bilateral almost uniform) topology to some \(\hat{x}\) in \(L^\Phi\). A sequence \((x_n)\subset L^0\) converges in the b.a.u.topology to \(x\) if, for all \(\varepsilon>0\), there exists a projection \(e\in{\mathcal M}\) such that \(\tau(e^\perp)<\varepsilon\) and \(\| e(x-x_n)e\|_\infty\to 0\).

MSC:

47A35 Ergodic theory of linear operators
46L52 Noncommutative function spaces

References:

[1] Chilin, V., Litvinov, S., Skalski, A.: A few remarks in non-commutative ergodic theory. J. Oper. Theor. 53(2), 331-350 (2005) · Zbl 1119.46314
[2] Chilin, V., Litvinov, S.: Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators. Methods Funct. Anal. Topol 12, 124-130 (2006) · Zbl 1124.46047
[3] Chilin, V., Litvinov, S.: Ergodic theorems in fully symmetric spaces of \[\tau -\] τ-measurable operators. Studia Math. 288(2), 177-195 (2015) · Zbl 1350.47008 · doi:10.4064/sm228-2-5
[4] Dodds, P.G., Dodds, T.K., Pagter, B.: Fully symmetric operator spaces. Integr. Equat. Oper. Theor 15, 942-972 (1992) · Zbl 0807.46028 · doi:10.1007/BF01203122
[5] Dodds, P.G., Dodds, T.K., Pagter, B.: Noncommutative Kothe duality. Trans. Amer. Math. Soc. 339(2), 717-750 (1993) · Zbl 0801.46074
[6] Dodds, P.G., Dodds, T.K., Sukochev, F.A., Tikhonov, Y.O.: A Non-commutative Yoshida-Hewitt theorem and convex sets of measurable operators closed locally in measure. Positivity 9, 457-484 (2005) · Zbl 1123.46044 · doi:10.1007/s11117-005-1384-0
[7] Dodds, P.G., Pagter, B., Sukochev, F.A.: Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators. Trans. Amer. Math. Soc. (2015) (to appear) · Zbl 1362.46063
[8] Edgar, G.A., Sucheston, L.: Stopping Times and Directed Processes. Cambridge University Press (1992) · Zbl 0779.60032
[9] Fack, T., Kosaki, H.: Generalized \[s\] s-numbers of \[\tau\] τ-measurable operators. Pacific J. Math. 123, 269-300 (1986) · Zbl 0617.46063 · doi:10.2140/pjm.1986.123.269
[10] Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. Amer. Math. Soc. 20(2), 385-439 (2007) · Zbl 1116.46053 · doi:10.1090/S0894-0347-06-00533-9
[11] Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 56(2), 494-503 (1952) · Zbl 0047.35703 · doi:10.2307/1969657
[12] Krein, S.G., Petunin, J.I., Semenov, E.M.: Interpolation of linear operators. Trans. Math. Monogr. Amer. Math. Soc. 54 (1982) · Zbl 0493.46058
[13] Kunze, W.: Noncommutative Orlicz spaces and generalized Arens algebras. Math. Nachr. 147, 123-138 (1990) · Zbl 0746.46062 · doi:10.1002/mana.19901470114
[14] Lindenstraus, J., Tsafriri, L.: Classical Banach Spaces I-II. Springer-Verlag, Berlin Heidelberg New York (1977) · Zbl 0362.46013 · doi:10.1007/978-3-642-66557-8
[15] Litvinov, S.: Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems. Proc. Amer. Math. Soc. 140(7), 2401-2409 (2012) · Zbl 1279.46048 · doi:10.1090/S0002-9939-2011-11483-7
[16] Muratov, M.A.: Noncommutative Orlicz-spaces. Dokl. Akad. Nauk UzSSR 6, 11-13 (1978) · Zbl 0467.46053
[17] Muratov, M.A.: The Luxemburg norm in Orlicz-spaces. Dokl. Akad. Nauk UzSSR 1, 5-6 (1979) · Zbl 0467.46054
[18] Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103-116 (1974) · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[19] Pisier, G.; Xu, Q.; Johnson, WB (ed.); Lindenstrauss, J. (ed.), Noncommutative \[L^p\] Lp-Spaces, No. 2 (2003), Amsterdam
[20] Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. 57, 401-457 (1953) · Zbl 0051.34201 · doi:10.2307/1969729
[21] Semenov, E.M., Sukochev, F.A.: The Banach-Saks index. Matematicheski Sbornik 195(2), 263-285 (2004) · Zbl 1078.46010 · doi:10.1070/SM2004v195n02ABEH000802
[22] Yeadon, F.J.: Non-commutative \[L^p\] Lp-spaces. Math. Proc. Camb. Phil. Soc. 77, 91-102 (1975) · Zbl 0327.46068 · doi:10.1017/S0305004100049434
[23] Yeadon, F.J.: Ergodic theorems for semifinite von Neumann algebras I. J. London Math. Soc. 16(2), 326-332 (1977) · Zbl 0369.46061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.