×

Evolution driven by the infinity fractional Laplacian. (English) Zbl 1520.35161

There are several non-equivalent definitions of the fractional \(\infty\)-Laplacian. The authors study the initial value problem \[ \begin{cases} \begin{alignedat}{3} \frac{\partial}{\partial t} u(x,t) & = \Delta^s_\infty u(x,t),\qquad & x\in\mathbb{R}^n, &\ t>0,\\ u(x,0) &= u_0(x), & x\in\mathbb{R}^n & \end{alignedat} \end{cases} \] using the definition \[ \Delta^s_\infty \phi(x)= C_s \sup_{|y|=1}\inf_{|\widetilde{y}|=1} \int^\infty_0\frac{\phi(x+\eta y)+\phi(x-\eta\widetilde{y})- 2\phi(x)}{\eta^{1+2s}}d\eta \] by C. Bjorland et al. [Adv. Math. 230, No. 4–6, 1859–1894 (2012; Zbl 1252.35099)]. They first rewrite the definition in a practical way, discriminating the critical points \((\nabla\phi= 0)\). The classical formula \[ \phi\left(x+\varepsilon\frac{\nabla\phi(x)}{|\nabla\phi(x)|}\right)+\phi\left(x-\varepsilon\frac{\nabla\phi(x)}{|\nabla\phi(x)|}\right)-2\phi(x)=\varepsilon^2|\nabla\phi(x)|^{-2}\Delta_\infty\phi(x)+O(\varepsilon^4) \] is lurking. (Here \(\Delta_\infty\phi= \sum_{i,j=1}^n \frac{\partial\phi}{\partial x_i}\frac{\partial\phi}{\partial x_j}\frac{\partial^2\phi}{\partial x_i\partial x_j}\).)
This paper contains substantial results:
Viscosity solutions are defined and provided with an existence theory.
For classical solutions, uniqueness is established.
A so-called Harnack estimate is obtained for viscosity solutions.
A delicate situation emerges. The uniqueness of viscosity solutions is yet lacking, while the existence result for classical solutions is restricted to some expedient special cases. In an ingenious way, the authors use a special kind of classical solutions that are directly related to the one-dimensional fractional heat equation \[ \frac{\partial v(x,t)}{\partial t}+(-\partial_{xx})^s v(x,t)=0. \] These special solutions are then compared with the viscosity solutions. In this way, Harnack estimates are reached for viscosity solutions.
An approximation scheme plays a central rôle.

MSC:

35R11 Fractional partial differential equations
35K55 Nonlinear parabolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Citations:

Zbl 1252.35099

References:

[1] Akagi, G.; Juutinen, P.; Kajikiya, R., Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Ann., 343, 4, 921-953 (2009) · Zbl 1190.35127 · doi:10.1007/s00208-008-0297-1
[2] Aronsson, G.; Crandall, MG; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Am. Math. Soc. (N.S.), 41, 4, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[3] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E., A Widder’s type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213, 2, 629-650 (2014) · Zbl 1310.35226 · doi:10.1007/s00205-014-0733-1
[4] Barron, EN; Evans, LC; Jensen, R., The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Am. Math. Soc., 360, 1, 77-101 (2008) · Zbl 1125.35019 · doi:10.1090/S0002-9947-07-04338-3
[5] Bjorland, C.; Caffarelli, L.; Figalli, A., Non-local gradient dependent operators, Adv. Math., 230, 4-6, 1859-1894 (2012) · Zbl 1252.35099 · doi:10.1016/j.aim.2012.03.032
[6] Bjorland, C.; Caffarelli, L.; Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65, 3, 337-380 (2012) · Zbl 1235.35278 · doi:10.1002/cpa.21379
[7] Blumenthal, RM; Getoor, RK, Some theorems on stable processes, Trans. Am. Math. Soc., 95, 263-273 (1960) · Zbl 0107.12401 · doi:10.1090/S0002-9947-1960-0119247-6
[8] Bonforte, M.; Sire, Y.; Vázquez, JL, Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal., 153, 142-168 (2017) · Zbl 1364.35416 · doi:10.1016/j.na.2016.08.027
[9] Bucur, C.; Squassina, M., An asymptotic expansion for the fractional p-Laplacian and for gradient-dependent nonlocal operators, Commun. Contemp. Math., 24, 4, 34 (2022) · Zbl 07517068 · doi:10.1142/S0219199721500218
[10] Caselles, V.; Morel, J-M; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 3, 376-386 (1998) · Zbl 0993.94504 · doi:10.1109/83.661188
[11] Chambolle, A.; Lindgren, E.; Monneau, R., A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var., 18, 3, 799-835 (2012) · Zbl 1255.35078 · doi:10.1051/cocv/2011182
[12] Chasseigne, E.; Jakobsen, ER, On nonlocal quasilinear equations and their local limits, J. Differ. Equ., 262, 6, 3759-3804 (2017) · Zbl 1357.35273 · doi:10.1016/j.jde.2016.12.001
[13] Collier, T.A., Hauer, D.: A doubly nonlinear evolution problem involving the fractional p-Laplacian. arXiv:2110.13401v1 [math.AP] (2021)
[14] Coulhon, T., Hauer, D.: Functional inequalities and regularising properties of nonlinear semigroups—theory and application. To appear in BCAM SpringerBriefs in Mathematics. arxiv:1604.08737 (2016)
[15] del Teso, F., Endal, J., Jakobsen, E.R., Vázquez, J.L.: Finite-difference methods for evolution equations driven by the infinity fractional Laplacian. In preparation (2022)
[16] del Teso, F.; Endal, J.; Lewicka, M., On asymptotic expansions for the fractional infinity Laplacian, Asymptot. Anal., 127, 3, 201-216 (2022) · Zbl 1509.35321
[17] del Teso, F.; Lindgren, E., A mean value formula for the variational p-Laplacian, NoDEA Nonlinear Differ. Equ. Appl., 28, 3, 33 (2021) · Zbl 1467.35190 · doi:10.1007/s00030-021-00688-6
[18] del Teso, F., Lindgren, E.: Finite difference schemes for the parabolic p-Laplace equation. arXiv:2205.13656v1 (2022) · Zbl 1486.65224
[19] del Teso, F.; Manfredi, JJ; Parviainen, M., Convergence of dynamic programming principles for the p-Laplacian, Adv. Calc. Var., 15, 2, 191-212 (2022) · Zbl 1486.35235 · doi:10.1515/acv-2019-0043
[20] Droniou, J.; Gallouet, T.; Vovelle, J., Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation, J. Evol. Equ., 3, 3, 499-521 (2003) · Zbl 1036.35123 · doi:10.1007/s00028-003-0503-1
[21] Juutinen, P.; Kawohl, B., On the evolution governed by the infinity Laplacian, Math. Ann., 335, 4, 819-851 (2006) · Zbl 1110.35037 · doi:10.1007/s00208-006-0766-3
[22] Juutinen, P.; Lindqvist, P.; Manfredi, JJ, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 3, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[23] Kolokoltsov, VN, Markov Processes, Semigroups and Generators, xviii+430 (2011), Berlin: Walter de Gruyter & Co., Berlin · Zbl 1220.60003
[24] Krylov, NV, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, xii+164 (1996), Providence: American Mathematical Society, Providence · Zbl 0865.35001
[25] Lewicka, M., Non-local Tug-of-War with noise for the geometric fractional p-Laplacian, Adv. Differ. Equ., 27, 1-2, 31-76 (2022) · Zbl 1484.35386
[26] Lindqvist, P.: Notes on the p-Laplace equation. Vol. 102. Report. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä, pp. ii+80 (2006) · Zbl 1256.35017
[27] Lindqvist, P., Notes on the Infinity Laplace Equation, ix+68 (2016), Bilbao: Springer, Bilbao · Zbl 1352.35045 · doi:10.1007/978-3-319-31532-4
[28] Manfredi, JJ; Parviainen, M.; Rossi, JD, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42, 5, 2058-2081 (2010) · Zbl 1231.35107 · doi:10.1137/100782073
[29] Manfredi, JJ; Parviainen, M.; Rossi, JD, An asymptotic mean value characterization for p-harmonic functions, Proc. Am. Math. Soc., 138, 3, 881-889 (2010) · Zbl 1187.35115 · doi:10.1090/S0002-9939-09-10183-1
[30] Manfredi, JJ; Parviainen, M.; Rossi, JD, Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var., 18, 1, 81-90 (2012) · Zbl 1233.91042 · doi:10.1051/cocv/2010046
[31] Mazón, JM; Rossi, JD; Toledo, J., Fractional p-Laplacian evolution equations, J. Math. Pures Appl. (9), 105, 6, 810-844 (2016) · Zbl 1338.45009 · doi:10.1016/j.matpur.2016.02.004
[32] Palatucci, G., The Dirichlet problem for the p-fractional Laplace equation, Nonlinear Anal., 177, part B, 699-732 (2018) · Zbl 1404.35212 · doi:10.1016/j.na.2018.05.004
[33] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, DB, Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[34] Portilheiro, M.; Vázquez, JL, A porous medium equation involving the infinity-Laplacian. Viscosity solutions and asymptotic behavior, Commun. Partial Differ. Equ., 37, 5, 753-793 (2012) · Zbl 1248.35113 · doi:10.1080/03605302.2012.662665
[35] Portilheiro, M.; Vázquez, JL, Degenerate homogeneous parabolic equations associated with the infinity-Laplacian, Calc. Var. Partial Differ. Equ., 46, 3-4, 705-724 (2013) · Zbl 1262.35137 · doi:10.1007/s00526-012-0500-9
[36] Vázquez, JL, The evolution fractional p-Laplacian equation in RN. Fundamental solution and asymptotic behaviour, Nonlinear Anal., 199 (2020) · Zbl 1447.35205 · doi:10.1016/j.na.2020.112034
[37] Vázquez, JL, The Dirichlet problem for the fractional p-Laplacian evolution equation, J. Differ. Equ., 260, 7, 6038-6056 (2016) · Zbl 1348.35042 · doi:10.1016/j.jde.2015.12.033
[38] Vázquez, JL, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63, 7-8, 1216-1231 (2018) · Zbl 1388.35216 · doi:10.1080/17476933.2017.1393807
[39] Vázquez, JL, The fractional p-Laplacian evolution equation in RN in the sublinear case, Calc. Var. Partial Differ. Equ., 60, 4, 59 (2021) · Zbl 1471.35312 · doi:10.1007/s00526-021-02005-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.